ATV 31H

Installation manual
Programming manual

Variable speed drives
for asynchronous motors

V1.7

\qquad

Wiring

NOTE: Please also refer to the Programming Manual.

When the drive is powered up, the power components and some of the control components are connected to the line supply. It is extremely dangerous to touch them. The drive cover must be kept closed.

In general, the drive power supply must be disconnected before any operation on either the electrical or mechanical parts of the installation or machine.
After the ATV has been switched off and the display has disappeared completely, wait for 10 minutes before working on the equipment. This is the time required for the capacitors to discharge.
The motor can be stopped during operation by inhibiting start commands or the speed reference while the drive remains powered up. If personnel safety requires prevention of sudden restarts, this electronic locking system is not sufficient: fit a cut-off on the power circuit..

The drive is fitted with safety devices which, in the event of a fault, can shut down the drive and consequently the motor. The motor itself may be stopped by a mechanical blockage. Finally, voltage variations, especially line supply failures, can also cause shutdowns.
If the cause of the shutdown disappears, there is a risk of restarting which may endanger certain machines or installations, especially those which must conform to safety regulations.

In this case the user must take precautions against the possibility of restarts, in particular by using a low speed detector to cut off power to the drive if the motor performs an unprogrammed shutdown.

The drive must be installed and set up in accordance with both international and national standards. Bringing the device into conformity is the responsibility of the systems integrator who must observe the EMC directive among others within the European Union.
The specifications contained in this document must be applied in order to comply with the essential requirements of the EMC directive.

The ATV 31 must be considered as a component: it is neither a machine nor a device ready for use in accordance with European directives (machinery directive and electromagnetic compatibility directive). It is the responsibility of the end user to ensure that the machine meets these standards.

The drive must not be used as a safety device for machines posing a potential risk of material damage or personal injury (lifting equipment, for example). In such applications, overspeed checks and checks to ensure that the trajectory remains under constant control must be made by separate devices which are independent of the drive.

The products and equipment described in this document may be changed or modified at any time, either from a technical point of view or in the way they are operated. Their description can in no way be considered contractual.

Single phase supply voltage: 200... 240 V 50/60 Hz

3-phase motor 200... 240 V

Motor	Line su	(input)				Drive (outp			ATV 31
Power indicated on plate (1)	Max. line current (2)		Max. prospectiv e line Isc	Apparent power	Max. inrush current (3)	Nominal current In (1)	Max. transient current (1) (4)	Power dissipated at nominal load	Reference (5)
	$\begin{aligned} & \text { at } \\ & 200 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { at } \\ & 240 \mathrm{~V} \end{aligned}$							
kW/HP	A	A	kA	kVA	A	A	A	W	
0.18/0.25	3.0	2.5	1	0.6	10	1.5	2.3	24	ATV31H018M2
0.37/0.5	5.3	4.4	1	1.0	10	3.3	5.0	41	ATV31H037M2
0.55/0.75	6.8	5.8	1	1.4	10	3.7	5.6	46	ATV31H055M2
0.75/1	8.9	7.5	1	1.8	10	4.8/4.2 (6)	7.2	60	ATV31H075M2
1.1/1.5	12.1	10.2	1	2.4	19	6.9	10.4	74	ATV31HU11M2
1.5/2	15.8	13.3	1	3.2	19	8.0	12.0	90	ATV31HU15M2
2.2/3	21.9	18.4	1	4.4	19	11.0	16.5	123	ATV31HU22M2

3-phase supply voltage: 200... 240 V 50/60 Hz
3-phase motor 200... 240 V

Motor	Line supply (input)					Drive (output)			ATV 31
Power indicated on plate (1)	Max. line current (2)		Max. prospectiv e line Isc	Apparent power	Max. inrush current (3)	Nominal current In (1)	Max. transient current (1)(4)	Power dissipated at nominal load	Reference (5)
	$\begin{aligned} & \hline \text { at } \\ & 200 \mathrm{~V} \end{aligned}$	at $240 \mathrm{~V}$							
kW/HP	A	A	kA	kVA	A	A	A	W	
0.18/0.25	2.1	1.9	5	0.7	10	1.5	2.3	23	ATV31H018M3X
0.37/0.5	3.8	3.3	5	1.3	10	3.3	5.0	38	ATV31H037M3X
0.55/0.75	4.9	4.2	5	1.7	10	3.7	5.6	43	ATV31H055M3X
0.75/1	6.4	5.6	5	2.2	10	4.8	7.2	55	ATV31H075M3X
1.1/1.5	8.5	7.4	5	3.0	10	6.9	10.4	71	ATV31HU11M3X
1.5/2	11.1	9.6	5	3.8	10	8.0	12.0	86	ATV31HU15M3X
2.2/3	14.9	13.0	5	5.2	10	11.0	16.5	114	ATV31HU22M3X
3/3	19.1	16.6	5	6.6	19	13.7	20.6	146	ATV31HU30M3X
4/5	24	21.1	5	8.4	19	17.5	26.3	180	ATV31HU40M3X
5.5/7.5	36.8	32.0	22	12.8	23	27.5	41.3	292	ATV31HU55M3X
7.5/10	46.8	40.9	22	16.2	23	33.0	49.5	388	ATV31HU75M3X
11/15	63.5	55.6	22	22.0	93	54.0	81.0	477	ATV31HD11M3X
15/20	82.1	71.9	22	28.5	93	66.0	99.0	628	ATV31HD15M3X

(1)These power ratings and currents are for a maximum ambient temperature of $50^{\circ} \mathrm{C}$ and a switching frequency of 4 kHz in continuous operation. The switching frequency is adjustable from 2 to 16 kHz .
Above 4 kHz , the drive will reduce the switching frequency in the event of excessive temperature rise. The temperature rise is controlled by a PTC probe in the power module. Nonetheless, the nominal drive current should be derated if operation above 4 kHz needs to be continuous.
Derating curves are shown on page $\underline{6}$ as a function of switching frequency, ambient temperature and mounting conditions.
(2)Current on a line supply with the "Max. prospective line Isc" indicated.
(3)Peak current on power-up, for the max. voltage ($240 \mathrm{~V}+10 \%$).
(4)For 60 seconds.
(5)Reference for a drive with built-in terminal but no control unit. For a drive with control potentiometer and RUN/STOP buttons, add an A at the end of the reference, e.g.: ATV31HO18M2A.
(6)4.8 A at $200 \mathrm{~V} / 4.6 \mathrm{~A}$ at $208 \mathrm{~V} / 4.2 \mathrm{~A}$ at 230 V and 240 V.

3-phase supply voltage: 380 ... $500 \mathrm{~V} \mathrm{50/60} \mathrm{~Hz}$
3-phase motor 380... 500 V

Motor	Line supply (input)					Drive (output)			ATV 31
Power indicated on plate (1)	Max. line current (2)		Max. prospectiv e line Isc	Apparent power	Max. inrush current (3)	Nominal current In (1)	Max. transient current (1) (4)	Power dissipated at nominal load	Reference(5)
	$\begin{aligned} & \hline \text { at } \\ & 380 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { at } \\ & 500 \mathrm{~V} \end{aligned}$							
kW/HP	A	A	kA	kVA	A	A	A	W	
0.37/0.5	2.2	1.7	5	1.5	10	1.5	2.3	32	ATV31H037N4
0.55/0.75	2.8	2.2	5	1.8	10	1.9	2.9	37	ATV31H055N4
0.75/1	3.6	2.7	5	2.4	10	2.3	3.5	41	ATV31H075N4
1.1/1.5	4.9	3.7	5	3.2	10	3.0	4.5	48	ATV31HU11N4
1.5/2	6.4	4.8	5	4.2	10	4.1	6.2	61	ATV31HU15N4
2.2/3	8.9	6.7	5	5.9	10	5.5	8.3	79	ATV31HU22N4
3/3	10.9	8.3	5	7.1	10	7.1	10.7	125	ATV31HU30N4
4/5	13.9	10.6	5	9.2	10	9.5	14.3	150	ATV31HU40N4
5.5/7.5	21.9	16.5	22	15.0	30	14.3	21.5	232	ATV31HU55N4
7.5/10	27.7	21.0	22	18.0	30	17.0	25.5	269	ATV31HU75N4
11/15	37.2	28.4	22	25.0	97	27.7	41.6	397	ATV31HD11N4
15/20	48.2	36.8	22	32.0	97	33.0	49.5	492	ATV31HD15N4

3-phase supply voltage: 525 ... $600 \mathrm{~V} \mathrm{50/60} \mathrm{~Hz}$
3-phase motor 525... 600 V

Motor	Line supply (input)					Drive (output)			ATV 31
Power indicated on	Max. line current (2)		Max. prospectiv e line Isc	Apparent power	Max. inrush current (3)	Nominal current In (1)	Max. transient current (1) (4)	Power dissipated at nominal load	Reference
plate (1)	at $525 \text { V }$	at 600 V							
kW/HP	A	A	kA	kVA	A	A	A	W	
0.75/1	2.8	2.4	5	2.5	12	1.7	2.6	36	ATV31H075S6X
1.5/2	4.8	4.2	5	4.4	12	2.7	4.1	48	ATV31HU15S6X
2.2/3	6.4	5.6	5	5.8	12	3.9	5.9	62	ATV31HU22S6X
4/5	10.7	9.3	5	9.7	12	6.1	9.2	94	ATV31HU40S6X
5.5/7.5	16.2	14.1	22	15.0	36	9.0	13.5	133	ATV31HU55S6X
7.5/10	21.3	18.5	22	19.0	36	11.0	16.5	165	ATV31HU75S6X
11/15	27.8	24.4	22	25.0	117	17.0	25.5	257	ATV31HD11S6X
15/20	36.4	31.8	22	33.0	117	22.0	33.0	335	ATV31HD15S6X

(1)These power ratings and currents are for a maximum ambient temperature of $50^{\circ} \mathrm{C}$ and a switching frequency of 4 kHz in continuous operation. The switching frequency is adjustable from 2 to 16 kHz .
Above 4 kHz , the drive will reduce the switching frequency in the event of excessive temperature rise. The temperature rise is controlled by a PTC probe in the power module. Nonetheless, the nominal drive current should be derated if operation above 4 kHz needs to be continuous.
Derating curves are shown on page $\underline{6}$ as a function of switching frequency, ambient temperature and mounting conditions.
(2)Current on a line supply with the "Max. prospective line Isc" indicated.
(3)Peak current on power-up, for the max. voltage ($500 \mathrm{~V}+10 \%, 600 \mathrm{~V}+10 \%$).
(4)For 60 seconds.
(5)Reference for a drive with built-in terminal but no control unit. For a drive with control potentiometer and RUN/STOP buttons, add an A at the end of the reference, e.g.: ATV31HO37N4A.

Dimensions and weights

ATV31		a							
mm	b								
mm	$\mathrm{c}(1)$ mm	G mm	hr mm	H mm	\varnothing mm	For screw	Weight kg		
H018M3X, HO37M3X	Size 1	72	145	120	6011	5	121.511	2×5	M4
H055M3X, HO75M3X	Size 2	72	145	130	6011	5	121.511	2×5	M4
HO18M2, H037M2	Size 3	72	145	130	6011	5	121.511	2×5	M4
H055M2, H075M2	Size 4	72	145	140	6011	5	121.511	2×5	M4
HU11M3X, HU15M3X	Size 5	105	143	130	9311	5	121.511	2×5	M4
HU11M2, HU15M2,	Size 6	105	143	150	9311	5	121.511	2×5	M4

H037N4, HO55N4, H075N4,
HU1 1N4,HU15N4,
H075S6X, HU15S6X

ATV3 1		$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$	b mm	$\begin{aligned} & \mathrm{c}(1) \\ & \mathrm{mm} \end{aligned}$	$\begin{aligned} & \mathrm{G} \\ & \mathrm{~mm} \end{aligned}$	hr mm	H mm	$\begin{aligned} & \varnothing \\ & \mathrm{mm} \end{aligned}$	For screw	Weight kg
$\begin{aligned} & \text { HU22M2, HU3OM3X, HU4OM3X, } \\ & \text { HU22N4, HU3ON4, HU4ON4, } \\ & \text { HU22S6X, HU40S6X } \end{aligned}$	Size 7	140	184	150	12611	6.5	15711	4×5	M4	2.35
$\begin{aligned} & \text { HU55M3X, HU75M3X, } \\ & \text { HU55N4, HU75N4, } \\ & \text { HU55S6X, HU75S6X } \end{aligned}$	Size 8	180	232	170	16011	5	21011	4×5	M4	4.70
HD1 1M3X, HD15M3X, HD1 1N4, HD15N4, HD1 1S6X, HD15S6X	Size 9	245	330	190	22511	7	29511	4×6	M5	9.0

(1)For drives in the A range, add 8 mm for the protruding potentiometer button.

Mounting and temperature conditions

Install the unit vertically, at 110°.
Do not place it close to heating elements.
Leave sufficient free space to ensure that the air required for cooling purposes can circulate from the bottom to the top of the unit.

Free space in front of unit: 10 mm minimum.

When IP20 protection is adequate, we recommend that the protective cover on the top of the drive be removed, as shown below.

Removing the protective cover

3 types of mounting are possible:

Type A mounting:

Type B mounting:

Drives mounted side-by-side, protective cover removed (the degree of protection becomes IP20)

Type C
Free space $\geqslant 50 \mathrm{~mm}$ on each side, protective cover removed (the degree of protection becomes IP20) mounting:

Mounting

Derating curves for the drive current In as a function of the temperature, switching frequency and type of mounting.

For intermediate temperatures (e.g. $55^{\circ} \mathrm{C}$), interpolate between 2 curves.
If you are installing the drives in enclosures, make provision for a flow of air at least equal to the value given in the table below for each drive.
$\left.\begin{array}{|l|l|}\hline \text { ATV31 } & \text { Flow rate in } \mathrm{m}^{3} / \mathrm{hour} \\ \hline \text { HO18M2, HO37M2, HO55M2, } \\ \text { HO18M3X, HO37M3X, H055M3X, } \\ \text { HO37N4, HO55N4, H075N4, HU1 1N4 } \\ \text { HO75S6X, HU15S6X }\end{array}\right)$

Mounting

Electromagnetic compatibility

EMC mounting plate: Supplied with the drive

Fix the EMC equipotentiality mounting plate to the holes in the ATV 31 heatsink using the 2 screws supplied, as shown in the drawings below.

Size 1-4

Size 5-6

Screws supplied:
$4 \times$ M4 screws for fixing the EMC clamps (clamps not supplied)

Size 8

$1 \times$ M5 screw for ground

ATV31	
H018M3X, H037M3X	Size 1
H055M3X, H075M3X	Size 2
H018M2, H037M2	Size 3
H055M2, H075M2	Size 4
HU11M3X, HU15M3X	Size 5
HU11M2, HU15M2, HU22M3X, HO37N4, H055N4, H075N4, HU1 1N4, HU15N4, H075S6X, HU15S6X	

ATV31	
HU22M2, HU3OM3X, HU4OM3X, HU22N4, HU30N4, HU4ON4, HU22S6X, HU4OS6X	Size 7
HU55M3X, HU75M3X,	
HU55N4, HU75N4,	
HU55S6X, HU75S6X	Size 8
HD11M3X, HD15M3X,	
HD11NA,HD15N4,	
HD11S6X, HD15S6X	Size 9

Access to terminals

To access the terminals, open the cover as shown in the example below.

Example ATV31HU11M2

Power terminals

\triangle
Connect the power terminals before connecting the control terminals.

Power terminal characteristics

ATV 31	Maximum connection capacity AWG mm^{2}		Tightening torque in Nm
HO18M2, HO37M2, HO55M2, H075M2, H018M3X, H037M3X, H055M3X, H075M3X, HU1 1M3X, HU15M3X	AWG 14	2.5	0.8
```HU1 1M2, HU15M2, HU22M2, HU22M3X, HU3OM3X, HU4OM3X, H037N4, HO55N4, HO75N4, HU1 1N4,HU15N4, HU22N4, HU3ON4, HU4ON4 H075S6X, HU15S6X, HU22S6X, HU4OS6X```	AWG 10	6	1.2
HU55M3X, HU75M3X, HU55N4, HU75N4, HU55S6X, HU75S6X	AWG 6	16	2.5
HD1 1M3X, HD15M3X, HD1 1N4, HD15N4, HD1 1S6X, HD15S6X	AWG 3	25	4.5

## Power terminal functions

Terminal	Function	For ATV 31
$\stackrel{\perp}{\stackrel{1}{2}}$	Ground terminal	All ratings
$\begin{aligned} & \hline \text { R/L1 } \\ & \text { S/L2 } \end{aligned}$	Power supply	ATV3 1 eeeeM2
$\begin{array}{\|l\|} \hline \text { R/L1 } \\ \text { S/L2 } \\ \text { T/L3 } \end{array}$		ATV3 1 eeeoM3X ATV310000N4 ATV31eeeeS6X
PO	DC bus + polarity	All ratings
PA/+	Output to braking resistor (+ polarity)	All ratings
PB	Output to braking resistor	All ratings
PC/-	DC bus - polarity	All ratings
$\begin{aligned} & \hline \text { U/T1 } \\ & \text { V/T2 } \\ & \text { W/T3 } \end{aligned}$	Outputs to the motor	All ratings

Never remove the commoning link between PO and PA/+. The PO and PA/+ terminal screws must always be fully tightened as a high current flows through the commoning link.

## Arrangement of the power terminals

ATV 31H018M3X, H037M3X, H055M3X, H075M3X
ATV $31 \mathrm{HO} 18 \mathrm{M} 2, \mathrm{HO} 3 \mathrm{M} 2, \mathrm{HO55M2}$, H075M2


ATV 31HU11M3X, HU15M3X, HU22M3X, HU30M3X, HU40M3X, H037N4, H055N4, H075N4, HU11N4, HU15N4, HU22N4, HU30N4, HU40N4, H075S6X, HU15S6X, HU22S6X, HU40S6X

ATV 31HU11M2, HU15M2, HU22M2


ATV 31HU55M3X, HU75M3X, HU55N4, HU75N4, HU55S6X, HU75S6X


ATV 31HD11M3X, HD15M3X, HD11N4, HD15N4, HD11S6X, HD15S6X


| $(1)$ | $R / L 1$ | $\mathrm{~S} / \mathrm{L} 2$ | $\mathrm{~T} / \mathrm{L} 3$ | PO | $\mathrm{PA} /+$ | PB | $\mathrm{PC} /-\mathrm{U} / \mathrm{T} 1$ | $\mathrm{~V} / \mathrm{T} 2$ | $\mathrm{~W} / \mathrm{T} 3$ | $(1)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Wiring

## Control terminals



- Maximum connection capacity: $2.5 \mathrm{~mm}^{2}$ - AWG 14
- Max. tightening torque: 0.6 Nm


## Control terminals

## Arrangement, characteristics and functions of the control terminals

Terminal	Function	Electrical characteristics
$\begin{array}{\|l} \hline \text { R1A } \\ \text { R1B } \\ \text { R1C } \end{array}$	Common point C/O contact (R1C) of programmable relay R1	- Min. switching capacity: 10 mA for 5 V .-   - Max. switching capacity on resistive load ( $\cos \varphi=1$ and $L / R=0 \mathrm{~ms}$ ):   5 A for $250 \mathrm{~V} \sim$ and $30 \mathrm{~V}=$
$\begin{aligned} & \text { R2A } \\ & \text { R2C } \end{aligned}$	N/O contact of programmable relay R2	- Max. switching capacity on inductive load $(\cos \varphi=0.4$ and $L / R=7 \mathrm{~ms})$ :   1.5 A for $250 \mathrm{~V} \sim$ and 30 V =-   - Sampling time 8 ms   - Service life: 100,000 operations at max. switching power $1,000,000$ operations at min. switching power


COM	Analog I/O common	OV
Al1	Analog voltage input	Analog input $0+10 \mathrm{~V}$ (max. safe voltage 30 V )   - Impedance $30 \mathrm{k} \Omega$   - Resolution $0.01 \mathrm{~V}, 10$-bit converter   - Precision $14.3 \%$, linearity $10.2 \%$, of max. value   - Sampling time 8 ms   - Operation with shielded cable 100 m max.
10 V	Power supply for setpoint potentiometer 1 to $10 \mathrm{k} \Omega$	+10 V (+ 8\%-0), 10 mA max, protected against short-circuits and overloads
AI2	Analog voltage input	Bipolar analog input 0110 V (max. safe voltage 130 V )   The + or - polarity of the voltage on A12 affects the direction of the setpoint and therefore the direction of operation.   - Impedance $30 \mathrm{k} \Omega$   - Resolution $0.01 \mathrm{~V}, 10$-bit + sign converter   - Precision $14.3 \%$, linearity $10.2 \%$, of max. value   - Sampling time 8 ms   - Operation with shielded cable 100 m max.


AI3	Analog current input	Analog input $\mathrm{X}-\mathrm{YmA} . \mathrm{X}$ and Y can be programmed from 0 to 20 mA   - Impedance $250 \Omega$   - Resolution $0.02 \mathrm{~mA}, 10$-bit converter   - Precision $14.3 \%$, linearity $10.2 \%$, of max. value   - Sampling time 8 ms
COM	Analog 1/O common	0 V
$\begin{aligned} & \mathrm{AOV} \\ & \mathrm{AOC} \end{aligned}$	Analog voltage output AOV or   Analog current output AOC or   Logic voltage output AOC AOV or AOC can be assigned (either, but not both)	Analog output 0 to 10 V , min. load impedance $470 \Omega$ or   Analog output $X-Y m A . X$ and $Y$ can be programmed from 0 to 20 mA ,   max. load impedance $800 \Omega$   - Resolution 8 bits (1)   - Precision 1 1\% (1)   - Linearity $10.2 \%$ (1)   - Sampling time 8 ms   This analog output can be configured as a 24 V logic output on AOC, min. load impedance $1.2 \mathrm{k} \Omega$.   (1) Characteristics of digital/analog converter.


24 V	Logic input power supply	+24 V protected against short-circuits and overloads, min. 19 V , max. 30 V Max. customer current available 100 mA
$\begin{aligned} & \mathrm{LII} \\ & \mathrm{LI2} \\ & \mathrm{LI} \end{aligned}$	Logic inputs	Programmable logic inputs   - + 24 V power supply (max. 30 V )   - Impedance $3.5 \mathrm{k} \Omega$   - State 0 if < 5 V , state 1 if > 11 V (voltage difference between LI- and CLI)   - Sampling time 4 ms


$\begin{array}{\|l\|l} \hline \text { LI4 } \\ \text { LIS } \\ \text { LI6 } \end{array}$	Logic inputs	Programmable logic inputs   - + 24 V power supply (max. 30 V )   - Impedance $3.5 \mathrm{k} \Omega$   - State 0 if < 5 V , state 1 if > 11 V (voltage difference between LI- and CLI)   - Sampling time 4 ms
CLI	Logic input common	See page 12.

## Wiring diagram for factory settings



ATV3 1 eeeeM3X/N4/S6X

Using the analog output as a logic output

(1) Line choke, if used (single phase or 3-phase)
(2) Fault relay contacts, for remote indication of the drive status.

Note: Fit interference suppressors to all inductive circuits near the drive or coupled to the same circuit (relays, contactors, solenoid valves, etc).

Choice of associated components:
Please refer to the catalogue.

## Logic input switch

This switch assigns the logic input common link to $\mathrm{OV}, 24 \mathrm{~V}$ or "floating":


## Examples of recommended circuit diagrams

## Using volt－free contacts

－Switch in＂Source＂position （ATV31 factory setting for types other than ATV31ゃeゃ॰A）

－Switch in＂SINK＂position （factory setting for ATV31•eッeA）


In this instance，the common must never be connected to earth or earth ground，as this presents a risk of unintended equipment operation on the first insulation fault．

## Using PLC transistor outputs

－Switch in CLI position
－Switch in CLI position


## Wiring recommendations

## Power

The drive must be earthed to conform with the regulations concerning high leakage currents（over 3.5 mA ）．
When upstream protection by means of a＂residual current device＂is required by the installation standards，a type A device should be used for single－phase drives and type B for 3－phase drives．Choose a suitable model incorporating：
－HF current filtering
－A time delay which prevents tripping caused by the load from stray capacitance on power－up．The time delay is not possible for 30 mA devices．In this case，choose devices with immunity against accidental tripping，for example RCDs with reinforced immunity from the s．i range（Merlin Gerin brand）．
If the installation includes several drives，provide one＂residual current device＂per drive．
Keep the power cables separate from circuits in the installation with low－level signals（detectors，PLCs，measuring apparatus，video， telephone）．

If you are using cables＞ 50 m between the drive and the motor，add output filters（please refer to the catalogue）．

## Control

Keep the control circuits away from the power cables．For control and speed reference circuits，we recommend using shielded twisted cables with a pitch of between 25 and 50 mm ，connecting the shielding to ground at each end．

## Operation on an IT system

IT system: Isolated or impedance earthed neutral.
Use a permanent insulation monitor compatible with non-linear loads (a Merlin Gerin type XM200, for example).
A
ATV 31 eeeM2 and N4 drives feature built-in RFI filters. These filters can be isolated from ground for operation on an IT system as follows:
ATV31HO18M2 to U22M2 and ATV31H037N4 to U4ON4:
Pull out the jumper on the left of the ground terminal as illustrated below.


## ATV31HU55N4 to D15N4:

Move the cable tag on the top left of the power terminals as illustrated below (example ATV31HU55N4):

IT system
(filter disconnected)


Normal
(filter connected) (factory setting)


## Electromagnetic compatibility

## Principle

- Grounds between the drive, motor and cable shielding must have "high frequency" equipotentiality.
- Use shielded cables with shielding connected to ground throughout $360^{\circ}$ at both ends for the motor cable 6, braking resistor (if used) 8, and control-signalling cables 7. Metal ducting or conduit can be used for part of the shielding length provided that there is no break in continuity.
- Ensure maximum separation between the power supply cable (line supply) and the motor cable.


## Installation diagram (examples)

Sizes 1 to 7


Size 8


Size 9


	Size 1	Size 2	Size 3	Size 4	Size 5	Size 6	Size 7	Size 8	Size 9
$\begin{array}{\|l} \hline \text { ATV3 } \\ 1 \end{array}$	$\begin{aligned} & \text { HO18M3X, } \\ & \text { HO37M3X } \end{aligned}$	$\begin{aligned} & \text { H055M3X, } \\ & \text { H075M3X } \end{aligned}$	$\begin{aligned} & \text { HO18M2, } \\ & \text { HO37M2 } \end{aligned}$	$\begin{aligned} & \mathrm{HO} 5 \mathrm{M} 2, \\ & \mathrm{H} 75 \mathrm{MD} \end{aligned}$	HU11M3X, HU15M3X	HU11M2, HU15M2 HU22M3X   H037N4, HO55N4, H075N4, HU1 1N4,   HU15N4   H075S6X, HU15S6X	HU22M2   HU3OM3X, HU4OM3X HU22N4, HU3ON4, HU4ON4 HU22S6X, HU4OS6X	HU55M3X, HU75M3X HU55N4, HU75N4 HU55S6X, HU75S6X	HD11M3X, HD15M3X HD1 1N4, HD15N4 HD11S6X, HD15S6X

1 Sheet steel grounded plate supplied with the drive, to be fitted as indicated on the diagram.

## 2 ATV 31

3 Non-shielded power supply wires or cable
4 Non-shielded wires for relay contacts
5 Fix and ground the shielding of cables 6, 7 and 8 as close as possible to the drive:

- Strip the shielding.
- Use stainless steel cable clamps of an appropriate size on the parts from which the shielding has been stripped, to attach them to the plate 1.
The shielding must be clamped tightly enough to the metal plate to ensure correct contact.
6 Shielded cable for motor connection with shielding connected to ground at both ends.
The shielding must be continuous and intermediate terminals must be in EMC shielded metal boxes.
For 0.18 to 1.5 kW drives, if the switching frequency is higher than 12 kHz , use cables with low linear capacitance: max. 130 pF (picoFarads) per metre.

7 Shielded cable for connecting the control/signalling wiring.
For applications requiring several conductors, use cables with a small cross-section ( $0.5 \mathrm{~mm}^{2}$ ).
The shielding must be connected to ground at both ends. The shielding must be continuous and intermediate terminals must be in EMC shielded metal boxes.

8 Shielded cable for connecting braking resistor (if fitted).
The shielding must be continuous and intermediate terminals must be in EMC shielded metal boxes.

## Note:

- If using an additional input filter, it should be mounted under the drive and connected directly to the line supply via an unshielded cable. Link 3 on the drive is then via the filter output cable.
- The HF equipotential ground connection between the drive, motor and cable shielding does not remove the need to connect the PE protective conductors (green-yellow) to the appropriate terminals on each unit.

A

## Contents

Warnings ..... 2
Steps for setting up the starter ..... 3
Factory configuration ..... 4
Software enhancements ..... 5
Basic functions ..... 6
Setup - Preliminary recommendations ..... 8
Functions of the display and the keys ..... 9
Remote terminal option ..... 11
Programming ..... 12
Function compatibility ..... 14
List of functions which can be assigned to inputs/outputs ..... 16
List of functions which can be assigned to the CANopen and Modbus control word bits ..... 18
Settings menu SEt- ..... 19
Motor control menu drC- ..... 23
l/O menu I-O- ..... 27
Control menu CtL- ..... 31
Application functions menu FUn- ..... 42
Fault menu FLt ..... 66
Communication menu COM- ..... 69
Display menu SUP- ..... 70
Maintenance ..... 73
Faults - Causes - Remedies ..... 74
Configuration/Settings table ..... 76
Index of parameter codes ..... 80
Index of functions ..... 81

NOTE: Please also refer to the "Installation Guide".

When the drive is powered up, the power components and some of the control components are connected to the line supply. It is extremely dangerous to touch them. The drive cover must be kept closed.

In general, the drive power supply must be disconnected before any operation on either the electrical or mechanical parts of the installation or machine.
After the ATV has been switched off and the display has disappeared completely, wait for 10 minutes before working on the equipment. This is the time required for the capacitors to discharge.
The motor can be stopped during operation by inhibiting start commands or the speed reference while the drive remains powered up. If personnel safety requires prevention of sudden restarts, this electronic locking system is not sufficient: fit a cut-off on the power circuit.

The drive is fitted with safety devices which, in the event of a fault, can shut down the drive and consequently the motor. The motor itself may be stopped by a mechanical blockage. Finally, voltage variations, especially line supply failures, can also cause shutdowns.
If the cause of the shutdown disappears, there is a risk of restarting which may endanger certain machines or installations, especially those which must conform to safety regulations.

In this case the user must take precautions against the possibility of restarts, in particular by using a low speed detector to cut off power to the drive if the motor performs an unprogrammed shutdown.

The drive must be installed and set up in accordance with both international and national standards. Bringing the device into conformity is the responsibility of the systems integrator who must observe the EMC directive among others within the European Union.
The specifications contained in this document must be applied in order to comply with the essential requirements of the EMC directive.

The ATV 31 must be considered as a component: it is neither a machine nor a device ready for use in accordance with European directives (machinery directive and electromagnetic compatibility directive). It is the responsibility of the end user to ensure that the machine meets these standards.

The drive must not be used as a safety device for machines posing a potential risk of material damage or personal injury (lifting equipment, for example). In such applications, overspeed checks and checks to ensure that the trajectory remains under constant control must be made by separate devices which are independent of the drive.

The products and equipment described in this document may be changed or modified at any time, either from a technical point of view or in the way they are operated. Their description can in no way be considered contractual.

## Steps for setting up the starter

## 1 - Delivery of the drive

- Check that the drive reference printed on the label is the same as that on the delivery note corresponding to the purchase order.
- Remove the ATV 31 from its packaging and check that it has not been damaged in transit.

2 - Check that the line voltage is compatible with the supply voltage range of the drive (see the ATV 31Installation Manual).


- The drive may be damaged if the line voltage is not compatible.


## 3 - Fit the drive

## 4 - Connect the following to the drive:

- The line supply, ensuring that it is:
- compatible with the voltage range of the drive
- switched off
- The motor, ensuring that its coupling corresponds to the line voltage
- The control via the logic inputs
- The speed reference via the logic or analog inputs


## 5 - Switch on the drive, but do not give a run command

6 - Configure the following:
The nominal frequency (bFr) of the motor, if it is different from 50 Hz .

## 7 - Configure the following in the drC- menu:

The motor parameters, only if the factory configuration of the drive is not suitable.

## 8 - Configure the following in the I-O-, CtL- and FUn- menus:

The application functions (only if the factory configuration of the drive is not suitable), for example the control mode: 3-wire, or 2-wire transition detection, or 2-wire level detection, or 2-wire level detection with forward direction priority, or local control for ATV31eeөA.

$\triangle$The user must ensure that the programmed functions are compatible with the wiring diagram used.

## 9 - Set the following in the SEt- menu:

- The ACC (Acceleration) and dEC (Deceleration) parameters
- The LSP (Low speed when the reference is zero) and HSP (High speed when the reference is maximum) parameters
- The ItH parameter (Motor thermal protection)


## 10 - Start the drive

## Practical recommendations

- Preparations can be made for programming the drive by filling in the configuration and settings tables (see page 76 ), in particular when the factory configuration has to be changed.
- It is always possible to return to the factory settings using the FCS parameter in the drC-, I-O-, CtL- and FUn- menus (return to the configuration selected by the CFG parameter).
The assignment of CFG results directly in a return to the selected configuration.
- For simple applications where the factory settings are suitable, the ATV31 is configured so as to be equally robust as the ATV28 factory settings.
- To achieve optimized drive performance in terms of accuracy and response time, it is essential to:
- Enter the values given on the motor rating plate in the Motor control menu drC- (page 23).
- Perform an auto-tune operation with the motor cold and connected, using parameter tUn in the drC-menu (page 24).
(Auto-tuning measures the stator resistance of the motor in order to optimize the control algorithms).
- Adjust parameters FLG and StA in the Settings menu SEt- (page 20).
- To locate the description of a function quickly, use the index of functions on page 81.
- Before configuring a function, read the "Function compatibility" section on pages 14 and 15.


## Factory configuration

## Factory settings

The ATV 31 is factory-set for the most common operating conditions:

- Display: Drive ready (rdY) with motor stopped, and motor frequency with motor running
- Motor frequency (bFr): 50 Hz
- Constant torque application with sensorless flux vector control (UFt = n )
- Normal stop mode on deceleration ramp (Stt = rMP).
- Stop mode in the event of a fault: Freewheel
- Linear ramps (ACC, dEC): 3 seconds
- Low speed (LSP): 0 Hz
- High speed (HSP): 50 Hz
- Motor thermal current $(\mathrm{ItH})=$ nominal motor current (value depending on drive rating)
- Standstill injection braking current $(S d C)=0.7 \times$ nominal drive current, for 0.5 seconds
- Automatic adaptation of the deceleration ramp in the event of overvoltage on braking
- No automatic restarting after a fault
- Switching frequency 4 kHz
- Logic inputs:
- LI1, LI2 (2 directions of operation): 2-wire transition detection control, LII = forward, LI2 = reverse, inactive on ATV 31 eeeeeeA drives (not assigned)
- LI3, LI4: 4 preset speeds (speed $1=$ speed reference or LSP, speed $2=10 \mathrm{~Hz}$, speed $3=15 \mathrm{~Hz}$, speed $4=20 \mathrm{~Hz}$ ).
- LI5 - LI6: Inactive (not assigned)
- Analog inputs:
- Al1: Speed reference 0-10 V, inactive on ATV 31 e00000A (not assigned)
- AI2: Summed speed reference input 0110 V
- AI3: 4-20 mA inactive (not assigned)
- Relay R1: The contact opens in the event of a fault (or drive off)
- Relay R2: Inactive (not assigned)
- Analog output AOC: 0-20 mA inactive (not assigned)


## ATV $3100000 \cdot A$ range

When they leave the factory, ATV 31 eeeee๑A drives are supplied with local control activated: the RUN, STOP buttons and the drive potentiometer are active. Logic inputs LI1 and LI2 and analog input AI1 are inactive (not assigned).

If the above values are compatible with the application, the drive can be used without changing the settings.

## Software enhancements

Since it was first marketed, the ATV 31 has been equipped with additional functions. Software version V1.2 has now been updated to V1.7. This documentation relates to version V1.7.
The software version appears on the rating plate attached to the side of the drive.

## Enhancements to version V1.7 compared with V1.2

## New parameters

Motor control menu

- LF $I_{1}$ : Choice of source configuration for the factory settings function (see page 26).

This parameter is also accessible in the I-O-, CtL-, and FUn- menus (pages $\underline{29}, \underline{41}$ and 65).

## Application functions menu FUn-

- In r : Ramp increment (see page 43)

Fault menu FLt-

- LEE: Configuration of external fault detection (see page 67).

New possible assignments for relays R1 and R2

- Relays R1 and R2 can now be assigned to LI1..LI6. It then returns the value of the selected logic input (see page 28).


## Basic functions

## Drive thermal protection

## Functions:

Thermal protection by PTC probe fitted on the heatsink or integrated in the power module.
Indirect protection of the drive against overloads by tripping in the event of an overcurrent. Typical tripping points:

- Motor current $=185 \%$ of nominal drive current: 2 seconds
- Motor current $=150 \%$ of nominal drive current: 60 seconds

Time
(seconds)


## Drive ventilation

The fan starts up when the drive is powered up then shuts down after 10 seconds if a run command has not been received.
The fan is powered automatically when the drive is unlocked (operating direction + reference). It is powered down a few seconds after the drive is locked (motor speed $<0.2 \mathrm{~Hz}$ and injection braking completed).

## Basic functions

## Motor thermal protection

## Function:

Thermal protection by calculating the $I^{2} \mathrm{t}$.
The protection takes account of self-cooled motors.
1 Caution: The memory of the motor thermal state returns to zero when the drive is disconnected.


## Setup - Preliminary recommendations

## Prior to switching on and configuring the drive

- Check that the line voltage is compatible with the supply voltage range of the drive (see pages 3 and 4 of the ATV 31 Installation Manual). The drive may be damaged if the line voltage is not compatible.
- Ensure the logic inputs are switched off (state 0 ) to prevent accidental starting. Otherwise, an input assigned to the run command may cause the motor to start immediately on exiting the configuration menus.


## With power switching via line contactor

- Avoid operating the contactor frequently (premature ageing of the filter capacitors). Use inputs LII to LI6 to control the drive.
- These instructions are vital for cycles < 60 s , otherwise the load resistor may be damaged.


## User adjustment and extension of functions

If necessary, the display and buttons can be used to modify the settings and to extend the functions described in the following pages. It is very easy to return to the factory settings using the FCS parameter in the drC-, I-O-, CtL- and FUn- menus (set Inl to activate the function, see page $26,30,41$ or 65).
There are three types of parameter:

- Display: Values displayed by the drive
- Setting: Can be changed during operation or when stopped
- Configuration: Can only be modified when stopped and no braking is taking place. Can be displayed during operation.

- Check that changes to the current operating settings do not present any danger. Changes should preferably be made with the drive stopped.


## Start up

Important: In factory settings mode on power-up, or in a manual fault reset or after a stop command, the motor can only be powered once the "forward", "reverse" and "DC injection stop" commands have been reset. If they have not been reset, the drive will display "nSt" but will not start. If the automatic restart function is configured (parameter Atr in the FLt- menu, see page 66), these commands are taken into account without a reset being necessary.

## Test on a low power motor or without a motor

- In factory settings mode, "motor phase loss" detection is active (OPL = YES). To check the drive in a test or maintenance environment without having to switch to a motor with the same rating as the drive (particularly useful in the case of high power drives), deactivate "motor phase loss" detection (OPL = NO).
- Configure the voltage/frequency ratio: UFt = L (drC- menu on page 24)

- Motor thermal protection will not be provided by the drive if the motor current is less than 0.2 times the nominal drive current.


## Using motors in parallel

- Configure the voltage/frequency ratio: UFt = L (drC- menu on page 24)
- Motor thermal protection is no longer provided by the drive. Provide an alternative means of thermal protection on every motor.


## Functions of the display and the keys

- Red LED "DC bus ON"
- Four 7-segment displays - 2 CANopen status LEDs
- Returns to the previous menu or parameter, or increases the displayed value
- Goes to the next menu or parameter, or decreases the displayed value

- Pressing $\nabla$ or does not store the selection.
- Press and hold down (>2 s) or to scroll through the data quickly.

To save and store the selection: ENT
The display flashes when a value is stored.
Normal display, with no fault present and no starting:

- 43.0: Display of the parameter selected in the SUP- menu (default selection: motor frequency). In current limit mode, the display flashes.
- init: Initialization sequence
- rdY: Drive ready
- dcb: DC injection braking in progress
- nSt: Freewheel stop
- FSt: Fast stop
- tUn: Auto-tuning in progress

The display flashes to indicate the presence of a fault.

## Functions of the display and the keys

## ATV31000000A:

- Red LED
"DC bus ON"
- Four 7-segment displays
- Returns to the previous menu or parameter, or increases the displayed value
- Goes to the next menu or parameter, or decreases the displayed value
- Reference potentiometer, active if the Fr 1 parameter in the CtL- menu is configured as AIP
- RUN button: Controls motor
 switch-on in forward mode, if parameter tCC in the I-O-menu is configured as LOC 2 CANopen status LEDs
- Exits a menu or a parameter, or clears the displayed value to return to the previous stored value

Enters a menu or a parameter, or saves the displayed parameter or value

STOP/RESET button

- Used to reset faults
- Can be used to control motor stopping
- If tCC (I-O-menu) is not configured as LOC, it is a freewheel stop.
- If tCC (I-O-menu) is configured as LOC, stopping is on a ramp, but if injection braking is in progress, a freewheel stop takes place.
- Pressing or does not store the selection.
- Press and hold down (>2 s) or $\nabla$ to scroll through the data quickly.

To save and store the selection: ENT
The display flashes when a value is stored.

## Normal display, with no fault present and no starting:

- 43.0: Display of the parameter selected in the SUP- menu (default selection: output frequency applied to the motor). In current limit mode, the display flashes.
- init: Initialization sequence
- rdY: Drive ready
- dcb: DC injection braking in progress
- nSt: Freewheel stop
- FSt: Fast stop
- tUn: Auto-tuning in progress

The display flashes to indicate the presence of a fault.

## Remote terminal option

This module is a local control unit which can be mounted on the door of the wall-mounted or floor-standing enclosure. It has a cable with connectors, which is connected to the drive serial link (see the manual supplied with the terminal). It has the same display and the same programming buttons as the ATV 31 with the addition of a switch to lock access to the menus and three buttons for controlling the drive:

- FWD/REV: reversal of the direction of rotation
- RUN: motor run command
- STOP/RESET: Motor stop command or fault reset

Pressing the button a first time stops the motor, and if DC injection standstill braking is configured, pressing it a second time stops this braking.

View of the front panel:



Note: Customer password protection has priority on the switch.

- The access locking switch on the remote terminal also prevents the drive settings being accessed via the keypad.
- When the remote terminal is disconnected, if the drive has been locked, the keypad will remain locked.
- In order for the remote terminal to be active, the tbr parameter in the COM- menu must remain in factory settings mode: 19.2 (see page 79).


## Saving and loading configurations

Up to four complete configurations for ATV 31 drives can be stored on the remote terminal. These configurations can be saved, transported and transferred from one drive to another of the same rating. 4 different operations for the same device can also be stored on the terminal. See the SCS and FCS parameters in the drC-, I-O-, CtL- and FUn- menus.

## Programming

## Access to menus



Some parameters can be accessed in a number of menus for increased user-friendliness:

- Entering settings
- Return to factory settings
- Restoring and saving the configuration

A dash appears after menu and sub-menu codes to differentiate them from parameter codes. Examples: FUn- menu, ACC parameter.

## Programming

## Accessing menu parameters

To save and store the selection: ${ }^{\mathbb{E} N T}$
The display flashes when a value is stored.
Example:

(Next parameter)

All the menus are "drop-down" type menus, which means that after the last parameter, if you continue to press $\nabla$, you will return to the first parameter and, conversely, you can switch from the first parameter to the last parameter by pressing $\mathbf{\Delta}$


If, after modifying any of the parameters ( $n^{\text {th }}$ ), you quit a menu and return to this menu without having accessed another menu in the meantime, you will be taken directly to the $\mathrm{n}^{\text {th }}$ parameter (see below). If, in the meantime, you have accessed another menu or have restarted the system, you will always be taken to the first parameter in the menu (see above).


## Configuration of the bFr parameter

This parameter can only be modified in stop mode without a run command.
bFr

Code	Description	Adjustment range	Factory setting
$\mathbf{b F r}$	Standard motor frequency	50	
	This parameter is only visible the first time the drive is switched on.   It can be modified at any time in the drC- menu.   $50 \mathrm{~Hz}: ~ I E C$   60 Hz: NEMA   This parameter modifies the presets of the following parameters: HSP page 19, Ftd page 22, FrS page 23 and tFr   page 25.		

## Function compatibility

## Incompatible functions

The following functions will be inaccessible or deactivated in the cases described below:

## Automatic restart

This is only possible for 2-wire level detection control ( $\mathrm{tCC}=2 \mathrm{C}$ and $\mathrm{tCt}=\mathrm{LEL}$ or PFO).

## Flying restart

This is only possible for 2-wire level detection control ( $\mathrm{tCC}=2 \mathrm{C}$ and $\mathrm{tCt}=\mathrm{LEL}$ or PFO).
This function is locked if automatic standstill injection is configured as DC (AdC=Ct).
Reverse
On the ATV3 1000 A range only, this function is locked if local control is active (tCC = LOC).

## Function compatibility table

The choice of application functions may be limited by the number of $I / O$ and by the fact that some functions are incompatible with one another. Functions which are not listed in this table are fully compatible.
If there is an incompatibility between functions, the first function configured will prevent the remainder being configured.
To configure a function, first check that functions which are incompatible with it are unassigned, especially those which are assigned in the factory settings.

		$\begin{aligned} & \text { I } \\ & \text { O} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$				$\begin{aligned} & \text { C } \\ & .0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \circ \\ & \stackrel{0}{0} \\ & \stackrel{\omega}{\omega} \\ & \stackrel{N}{\omega} \\ & \sim \end{aligned}$	
Summing inputs (factory setting)		$\bullet$		$\uparrow$	$\bullet$	$\uparrow$				
+/- speed (1)	$\bullet$			-	-	-				
Management of limit switches					$\bullet$					
Preset speeds (factory setting)	$\leftarrow$	$\bullet$			-	$\uparrow$				
PI regulator	$\bullet$	-	-	$\bullet$		-	-			
Jog operation	$\leftarrow$	$\bullet$		$\leftarrow$	-		-			
Brake control					$\bullet$	$\bullet$		$\bullet$		
DC injection stop							$\bullet$			$\uparrow$
Fast stop										$\uparrow$
Freewheel stop								$\leftarrow$	$\leftarrow$	

(1)Excluding special application with reference channel Fr2 (see diagrams $\underline{33}$ and $\underline{35}$ )


Priority functions (functions which cannot be active simultaneously):


Stop functions have priority over run commands.
Speed references via logic command have priority over analog references.

## Function compatibility

## 4. Logic and analog input application functions

Each of the functions on the following pages can be assigned to one of the inputs.
A single input can activate several functions at the same time (reverse and $2^{\text {nd }}$ ramp for example). The user must therefore ensure that these functions can be used at the same time.

The SUP- display menu (parameters LIA and AIA on page $\mathbf{7 2}$ ) can be used to display the functions assigned to each input in order to check their compatibility.

Before assigning a reference, a command or a function to a logic or analog input, check that this input has not already been assigned in the factory settings, and that no other input has been assigned to an incompatible or unwanted function.

- Example of incompatible function to be unassigned:
activate " $+/-$ speed", first unassign the preset speeds and summing input 2.
- Example of unwanted function to be unassigned:
control an ATV31e0eA at the terminals it is advisable to unassign the potentiometer and the RUN button.
The following table indicates the factory-set input assignments and the procedure for unassigning them.
$\left.\begin{array}{|l|l|l|l|l|l|}\hline \begin{array}{l}\text { Assigned input } \\ \text { ATV3 } 1 \boldsymbol{\bullet e \bullet}\end{array} & \text { ATV3 1 } \bullet \bullet \bullet A\end{array}\right)$

List of functions which can be assigned to inputs／outputs

Logic inputs	Page	Code	Factory setting	
			ATV31＊＊＊	ATV31000A
Not assigned	$=$	－	LI5－LI6	$\begin{aligned} & \text { LI1 - LI2 } \\ & \text { LI5 - LI6 } \end{aligned}$
Forward	$=$	－	LII	
2 preset speeds	50	PS2	LI3	LI3
4 preset speeds	50	PS4	LI4	LI4
8 preset speeds	50	PS8		
16 preset speeds	51	PS16		
2 preset PI references	57	Pr2		
4 preset PI references	57	Pr4		
＋speed	54	USP		
－speed	54	dSP		
Jog operation	52	JOG		
Ramp switching	43	rPS		
Switching for ${ }^{\text {nd }}$ current limit	61	LC2		
Fast stop via logic input	45	FSt		
DC injection via logic input	45	dCl		
Freewheel stop via logic input	46	nSt		
Reverse	27	rrS	LI2	
External fault	67	EtF		
RESET（fault reset）	66	rSF		
Forced local mode	69	FLO		
Reference switching	39	rFC		
Control channel switching	40	CCS		
Motor switching	62	CHP		
Forward limit switch	64	LAF		
Reverse limit switch	64	LAr		
Fault inhibit	68	InH		


Analog inputs	Page	Code	Factory setting	
			ATV3100॰	ATV31000A
Not assigned	＝	－	Al3	Al1－Al3
Reference 1	38	Fr1	Al1	AIP （potentiometer ）
Reference 2	38	Fr2		
Summing input 2	48	SA2	Al2	Al2
Summing input 3	48	SA3		
PI regulator feedback	57	PIF		


Analog／logic output	Page	Code	Factory setting
Not assigned	＝	－	AOC／AOV
Motor current	28	－ 5	
Motor frequency	28	r Fr	
Motor torque	28	－L	
Power supplied by the drive	28	－Pr	
Drive fault（logic data）	28	FLt	
Drive running（logic data）	28	rUn	
Frequency threshold reached（logic data）	28	F ヒ A	
High speed（HSP）reached（logic data）	28	FLA	
Current threshold reached（logic data）	28	Lヒ月	
Frequency reference reached（logic data）	28	5 r 月	
Motor thermal threshold reached（logic data）	28	t5 ${ }^{\text {F }}$	
Brake sequence（logic data）	60	$b L[$	

List of functions which can be assigned to inputs/outputs

Relay	Page	Code	Factory setting
Not assigned	=	-	R2
Drive fault	28	FLt	R1
Drive running	28	r ${ }_{\text {F }}$	
Frequency threshold reached	28	Ft $\boldsymbol{r}$	
High speed (HSP) reached	28	FLA	
Current threshold reached	28	LヒA	
Frequency reference reached	28	$5 r$ A	
Motor thermal threshold reached	28	t5月	
Brake sequence	60	$b L[$	
Copy of the logic input	$\underline{28}$	L 1 •	

B

List of functions that can be assigned to the CANopen and Modbus control word bits

Relay	Page	Code
2 preset speeds	50	P5 2
4 preset speeds	50	P54
8 preset speeds	50	P5日
16 preset speeds	51	P5 16
2 preset PI references	57	Pre
4 preset PI references	57	Pr 4
Ramp switching	43	rP5
Switching for $2^{\text {nd }}$ current limit	61	L L 2
Fast stop via logic input	45	F5t
DC injection via logic input	45	dL I
External fault	67	Et F
Reference switching	39	r F L
Control channel switching	40	CC5
Motor switching	62	[ HP

## Settings menu SEt－



The adjustment parameters can be modified with the drive running or stopped．
Check that it is safe to make changes during operation．Changes should preferably be made in stop mode．
These parameter appear regardless of how the other menus have been configured．

These parameters only appear if the corresponding function has been selected in another menu．When the corresponding function is also accessible and adjustable from within the configuration menu，to aid programming their description is detailed in these menus，on the pages indicated．


Code	Description		Adjustment range	Factory setting
LFr	Speed reference via the remote terminal		0 to HSP	
	This parameter appears if LCC＝YES（page 40）or if Fr1／Fr2＝LCC（page 38），and if the remote terminal is online．In this case，LFr can also be accessed via the drive keypad．   LFr is reset to 0 when the drive is powered down．			
$r P 1$	Internal PI regulator reference	See page 57	0.0 to 100\％	0
A［［	Acceleration ramp time		according to parameter Inr （See page 43）	3 s
	Defined as the acceleration time between 0 and the nominal frequency FrS（parameter in the drC－menu）．			
A［2	$2^{\text {nd }}$ acceleration ramp time	See page 44	according to parameter Inr （See page 43）	5 s
$d E 2$	$2^{\text {nd }}$ deceleration ramp time	See page 44	according to parameter Inr （See page 43）	5 s
$d E[$	Deceleration ramp time		according to parameter Inr （See page 43）	3 s
	Defined as the deceleration time between the nominal frequency FrS（parameter in the drC－menu）and 0. Check that the value of dEC is not too low in relation to the load to be stopped．			
ER I	Start of CUS－type acceleration ramp rounded as \％of total ramp time（ACC or AC2）	See page 42	O to 100	10\％
ヒ月	End of CUS－type acceleration ramp rounded as \％of total ramp time（ACC or AC2）	See page 42	0 to（100－tA1）	10\％
ヒ 月 ヨ	Start of CUS－type deceleration ramp rounded as \％of total ramp time（dEC or dE2）	See page 42	0 to 100	10\％
ER4	End of CUS－type deceleration ramp rounded as \％of total ramp time（dEC or dE2）	See page 42	0 to（100－tA3）	10\％
$L 5 P$	Low speed		0 to HSP	OHz
	（Motor frequency at min．reference）			
H 5 P	High speed		LSP to tFr	bFr
	（Motor frequency to max．reference）：Check that this setting is suitable for the motor and the application．			


(1)In corresponds to the nominal drive current indicated in the Installation Manual and on the drive rating plate.
(2)Caution: These settings are not related to the "automatic standstill DC injection" function.

These parameters only appear if the corresponding function has been selected in another menu. When the corresponding function is also accessible and adjustable from within the configuration menu, to aid programming their description is detailed in these menus, on the pages indicated.
Those which are underlined appear in factory settings mode.


Code	Description	Adjustment range	Factory setting
$J P F$	Skip frequency	0 to 500	0 Hz
	Prevents prolonged operation at a frequency range of 1 1 Hz around JPF．This function prevents a critical		
		sean	


$J F ?$	$2^{\text {nd }}$ skip frequency		0 to 500	OHz
	Prevents prolonged operation at a frequency range of 11 Hz around JF2．This function prevents a critical speed which leads to resonance．Setting the function to 0 renders it inactive．			
$J L F$	Jog operating frequency	See page 52	0 to 10 Hz	10 Hz
rPL	PI regulator proportional gain	See page 57	0.01 to 100	1
r IG	PI regulator integral gain	See page 57	0.01 to 100／s	1／s
Fb 5	PI feedback multiplication coefficient	See page 57	0.1 to 100	1
P IL	Reversal of the direction of correction of the PI regulator	See page 57	no－YES	no
$r P 己$	$2^{\text {nd }}$ preset PI reference	See page 57	O to 100\％	30\％
rPヨ	$3^{\text {rd }}$ preset PI reference	See page 57	0 to 100\％	60\％
rP4	$4^{\text {th }}$ preset PI reference	See page 57	0 to 100\％	90\％
$5 P 己$	$2^{\text {nd }}$ preset speed	See page 51	0 to 500 Hz	10 Hz
$5 P \exists$	$3^{\text {rd }}$ preset speed	See page 51	0 to 500 Hz	15 Hz
$5 P 4$	$4^{\text {th }}$ preset speed	See page 51	0 to 500 Hz	20 Hz
$5 P 5$	$5^{\text {th }}$ preset speed	See page 51	0 to 500 Hz	25 Hz
$5 P 6$	$6^{\text {th }}$ preset speed	See page 51	0 to 500 Hz	30 Hz
$5 P 7$	$7^{\text {th }}$ preset speed	See page 51	0 to 500 Hz	35 Hz
$5 P$ P	$8^{\text {th }}$ preset speed	See page 51	0 to 500 Hz	40 Hz
$5 P 9$	$9^{\text {th }}$ preset speed	See page 51	0 to 500 Hz	45 Hz
5 P IV	$10^{\text {th }}$ preset speed	See page 51	0 to 500 Hz	50 Hz
5 P I I	$11^{\text {th }}$ preset speed	See page 51	0 to 500 Hz	55 HZ
5Pl2	$12^{\text {th }}$ preset speed	See page 51	0 to 500 Hz	60 Hz
5 P1ヨ	$13^{\text {th }}$ preset speed	See page 51	0 to 500 Hz	70 Hz
5 P 14	$14^{\text {th }}$ preset speed	See page 51	0 to 500 Hz	80 Hz
5 P 15	$15^{\text {th }}$ preset speed	See page 51	0 to 500 Hz	90 Hz
5 P16	$16^{\text {th }}$ preset speed	See page 51	0 to 500 Hz	100 Hz
［L I	Current limit		0.25 to $1.5 \ln (1)$	$1.5 \ln (1)$
	Used to limit the torque and the temperature rise of the motor．			
［L 2	$2^{\text {nd }}$ current limit	See page 61	0.25 to $1.5 \ln (1)$	$1.5 \ln (1)$
$t L 5$	Low speed operating time		0 to 999.9 s	0 （no time limit）

（1）In corresponds to the nominal drive current indicated in the Installation Manual and on the drive rating plate．
These parameters only appear if the corresponding function has been selected in another menu．When the corresponding function is also accessible and adjustable from within the configuration menu，to aid programming their description is detailed in these menus，on the pages indicated．
Those which are underlined appear in factory settings mode．


Code	Description	Adjustment range	Factory setting
Ftd	Motor frequency threshold above which the relay contact (R1 or R2 = FtA) closes or output AOV = $10 \mathrm{~V}(\mathrm{dO}=\mathrm{StA})$	0 to 500 Hz	bFr
tEd	Motor thermal state threshold above which the relay contact ( R 1 or $\mathrm{R} 2=\mathrm{tSA})$ closes or output $\mathrm{AOV}=10 \mathrm{~V}(\mathrm{dO}=\mathrm{tSA})$	O to 118\%	100\%
ctd	Motor current threshold beyond which the relay contact (R1 or R2 = CtA) closes or output AOV $=10 \mathrm{~V}(\mathrm{dO}=\mathrm{CtA})$	0 to $1.5 \ln (1)$	$\ln (1)$
5d5	Scale factor for display parameter SPd1/SPd2/SPd3 (SUP- menu on page 71)	0.1 to 200	30
	Used to scale a value in proportion to the output frequency rFr: the machine speed, the motor speed, etc.   - If SdS $\leqslant 1, S P d 1$ is displayed (possible definition $=0.01$ )   - If $1<$ SdS $\leqslant 10$, SPd2 is displayed (possible definition $=0.1$ )   - If SdS > 10, SPd3 is displayed (possible definition = 1)   - If SdS > 10 and $\mathrm{SdS} \times \mathrm{rFr}>9999$ :   Display of Spd3 $=\frac{\mathrm{SdS} \times \mathrm{rFr}}{1000}$ to 2 decimal places   Example: For 24 223, display is 24.22   - If SdS > 10 and $\mathrm{SdS} \times \mathrm{rFr}>65535$, display locked at 65.54   Example: Display motor speed for   4-pole motor, 1500 rpm at 50 Hz (synchronous speed):   SdS = 30   SPd3 $=1500$ at $r F r=50 \mathrm{~Hz}$		
5 Fr	Switching frequency See page 25	2.0 to 16 kHz	4 kHz
	This parameter can also be accessed in the drC- menu.		

(1)In corresponds to the nominal drive current indicated in the Installation Manual and on the drive rating plate.

## Motor control menu drC-



With the exception of $t U n$, which can power up the motor, parameters can only be modified in stop mode, with no run command present.
On the optional remote terminal, this menu can be accessed with the switch in the $\square$ position.
Drive performance can be optimized by:

- Entering the values given on the motor rating plate in the drive menu
- Performing an auto-tune operation (on a standard asynchronous motor)


Code	Description	Adjustment range	Factory setting
$b F r$	Standard motor frequency		50
	50 Hz : IEC   60 Hz : NEMA   This parameter modifies the presets of the following parameters: HSP page 19, Ftd page $\underline{22}$, FrS page $\underline{23}$ and tFr page 25.		
U $\cap 5$	Nominal motor voltage given on the rating plate	According to drive rating	According to drive rating
	ATV3 1 eeeM2: 100 to 240 V ATV3 1 eeeM3X: 100 to 240 V ATV31eeoN4: 100 to 500 V ATV3 $1 e \bullet e S 6 X: 100$ to 600 V		
$F r 5$	Nominal motor frequency given on the rating plate	10 to 500 Hz	50 Hz
	$\triangle$   The ratio   $\frac{\text { UnS (in volts) }}{\text { FrS (in } \mathrm{Hz} \text { ) }}$ must not exceed the following values:   ATV3 1 eeeM2: 7 max.   ATV31e0@M3X: 7 max.   ATV31000N4: 14 max.   ATV3 1 eeeS6X: 17 max.   The factory setting is 50 Hz , or preset to 60 Hz if bFr is set to 60 Hz .		
$n[r$	Nominal motor current given on the rating plate	0.25 to $1.5 \ln (1)$	According to drive rating
$n 5 P$	Nominal motor speed given on the rating plate	0 to 32760 RPM	According to drive rating
	0 to 9999 RPM then 10.00 to 32.76 KRPM   If, rather than the nominal speed, the rating plate indicates the synchronous speed and the slip in Hz or as a \%, calculate the nominal speed as follows:  		
[ 05	Motor Cos Phi given on the rating plate	0.5 to 1	According to drive rating

(1)In corresponds to the nominal drive current indicated in the Installation Manual and on the drive rating plate.

(1)Procedure:

- Check that the motor is cold.
- Disconnect the cables from the motor terminals.
- Measure the resistance between 2 of the motor terminals (U. V. W) without modifying its connection.
- Use the $\boldsymbol{\nabla}$ keys to enter half the measured value.
- Increase the factory setting of UFr (page 20) to $100 \%$ rather than $20 \%$.


Code	Description	Adjustment range	Factory setting
nrd	Random switching frequency		YES
	YE 5: Frequency with random modulation   $\cap \square$ : Fixed frequency   Random frequency modulation prevents any resonance which may occur at a fixed frequency.		
5 Fr	Switching frequency (1)	2.0 to 16 kHz	4 kHz
	The frequency can be adjusted to reduce the noise generated by the motor. If the frequency has been set to a value higher than 4 kHz , in the event of an excessive rise in temperature, the drive will automatically reduce the switching frequency and increase it again once the temperature has returned to normal.		
EFr	Maximum output frequency	10 to 500 Hz	60 Hz
	The factory setting is 60 Hz , or preset to 72 Hz if bFr is set to 60 Hz .		
$5 r F$	Suppression of the speed loop filter		nO
	$n \square$ : The speed loop filter is active (prevents the reference being exceeded). YE 5: The speed loop filter is suppressed (in position control applications, this reduces the response time and the reference may be exceeded).		

(1)SCS and FCS can be accessed via several configuration menus but they concern all menus and parameters as a whole.
(2)Parameter can also be accessed in the settings menu (SEt-).

de	Description	Adjustment range	tory settin
[ F L	Source confi		Std
	Choice of source configuration.   5 t 5: Run/stop configuration.   Identical to the factory configuration apart from the I/O assignments:   - Logic inputs:   - LII, LI2 (2 directions of operation): 2-wire transition detection control, LI1 = forward, LI2 = reverse, inactive on ATV $3100000 \cdot$ A drives (not assigned)   - LI3 to LI6: Inactive (not assigned)   - Analog inputs:   - Al1: Speed reference 0-10 V, inactive on ATV $3100000 \bullet$ A drives (not assigned)   - AI2, A13: Inactive (not assigned)   - Relay R1: The contact opens in the event of a fault (or drive switched off)   - Relay R2: Inactive (not assigned)   - Analog output AOC: 0-20 mA inactive (not assigned)   - 5 t d: Factory configuration (see page 4).   The assignment of CFG results directly in a return to the selected configuration.		
F [ 5	Return to factory settings/restore configuration (1)		no
	$n \square:$ Function inactive   r E [ I: The current configuration becomes identical to the backup configuration previously saved by SCS = Strl. rECI is only visible if the backup has been carried out. FCS automatically changes to nO as soon as this action has been performed.   In I : The current configuration is replaced by the configuration selected by parameter CFG (2). FCS automatically changes to nO as soon as this action has been performed.   - If the remote terminal option is connected to the drive, the following additional selection options appear, as long as the corresponding files have been loaded in the remote terminal's EEPROM memory ( 0 to 4 files): $F I L \quad I, F I L 己, F I L \exists, F I L 4$. They enable the current configuration to be replaced with one of the 4 configurations which may be loaded on the remote terminal. FCS automatically changes to nO as soon as this action has been performed. Caution: If $n A d$ appears on the display briefly once the parameter has switched to nO, this means that the configuration transfer is not possible and has not been performed (different drive ratings for example). If $n t r$ appears on the display briefly once the parameter has switched to $n \mathrm{O}$, this means that a configuration transfer error has occurred and the factory settings must be restored using Inl. In both cases, check the configuration to be transferred before trying again.		

For rECI, InI and FL1 to FL4 to be taken into account, the ENT key must be held down for 2 s .
(1)(SCS, CFG and FCS can be accessed via several configuration menus but they concern all menus and parameters as a whole.
(2)The following parameters are not modified by this function, they retain the same configuration:

- bFr (Standard motor frequency) page 23.
- LCC (Control via remote display terminal) page 40.
- COd (Terminal locking code) page 72.
- The parameters in the Communication menu COM-.
- The parameters in the Display menu SUP-.


The parameters can only be modified when the drive is stopped and no run command is present. On the optional remote terminal, this menu can be accessed with the switch in the $\square$ position.


Code	Description	Factory setting
$t[L$	2-wire/3-wire control (Type of control)	$\begin{aligned} & \hline \text { 2C } \\ & \text { ATV3 } 1 \text { ee॰A: LOC } \end{aligned}$
	Control configuration:   ㄹ [ = 2-wire control   $\exists[=3$-wire control   $L \square[$ = local control (drive RUN/STOP/RESET) for ATV3 1 ee日A   2-wire control: The open or closed state of the input controls ru   Wiring example:   LII: forward   Llx: reverse   3-wire control (pulse control): A "forward" or "reverse" pulse is is sufficient to control stopping.   Example of wiring:   LII: stop   LI2: forward   LIx: reverse   4   To change the assignment of tCC press the "ENT" key f to return to their factory setting: $\mathrm{rrS}, \mathrm{tCt}$ and all functio	3, see page 38).   rting, a "stop" pulse   following functions s.
$t[E$	Type of 2-wire control (parameter only accessible if tCC = 2C)	rn
	$L E L$ : State 0 or 1 is taken into account for run or stop.   trn: A change of state (transition or edge) is necessary to initiate operation, in order to prevent accidental restarts after a break in the power supply.   PFD: State 0 or 1 is taken into account for run or stop, but the "forward" input always takes priority over the "reverse" input.	
$r \times 5$	Reverse operation via logic input	if $\mathrm{tCC}=2 \mathrm{C}: \mathrm{LI} 2$ if $\mathrm{tCC}=3 \mathrm{Cl}: \mathrm{LI} 3$ if $\mathrm{tCC}=\mathrm{LOC}: \mathrm{nO}$
	If $\mathrm{rrS}=\mathrm{nO}$, reverse operation is active, by means of negative voltage on AI2 for example.   $n \square$ : Not assigned   L I I: Logic input LI1   $L \quad I$ : Logic input LI2, can be accessed if $\mathrm{tCC}=2 \mathrm{C}$   L I ヨ: Logic input LI3   L 1 Ч: Logic input LI4   L I 5: Logic input LI5   L I G: Logic input LI6	




Code	Description ${ }^{\text {a }}$
$r ?$	Relay r2 no
	п ロ: Not assigned   $F L E$ : Drive fault   $r U_{n}$ : Drive running   $F \in A$ : Frequency threshold reached (Ftd parameter in the SEt- menu, page 22)   F L A: High speed (HSP) reached   L $\in$ A: Current threshold reached (Ctd parameter in the SEt- menu, page 22)   5 r A: Frequency reference reached   t 5 A: Motor thermal threshold reached (ttd parameter in the SEt- menu, page 22)   $b L[$ : Brake sequence (for information, as this assignment can be only be activated or deactivated from the FUn- menu, see page 60)   A P L : Loss of 4-20 mA signal, even if $\mathrm{LFL}=\mathrm{nO}$ (page 68)   $L I I$ to $L$ IG: Returns the value of the selected logic input.   The relay is powered up when the selected assignment is active, with the exception of FLt (powered up if the drive is not faulty).
$5[5$	Saving the configuration (1)
	n $\square$ : Function inactive   $5 \operatorname{tr}$ I: Saves the current configuration (but not the result of auto-tuning) to EEPROM. SCS automatically switches to nO as soon as the save has been performed. This function is used to keep another configuration in reserve, in addition to the current configuration.   When drives leave the factory the current configuration and the backup configuration are both initialized with the factory configuration.   - If the remote terminal option is connected to the drive, the following additional selection options will appear: FIL I,FIL L,FIL ヨ,FIL 4 (files available in the remote terminal's EEPROM memory for saving the current configuration). They can be used to store between 1 and 4 different configurations which can also be stored on or even transferred to other drives of the same rating. SCS automatically switches to nO as soon as the save has been performed.   For Strl and FIL2 to FIL4 to be taken into account, the ENT key must be held down for 2 s .
CFL	Source configuration ${ }^{\text {atd }}$
	Choice of source configuration.   5 t 5: Run/stop configuration.   Identical to the factory configuration apart from the I/O assignments:   - Logic inputs:   - LI1, LI2 (2 directions of operation): 2-wire transition detection control, LI1 = forward, LI2 = reverse, inactive on ATV 31 e00000A drives (not assigned)   - LI3 to LI6: Inactive (not assigned)   - Analog inputs:      - AI2, A13: Inactive (not assigned)   - Relay R1: The contact opens in the event of a fault (or drive switched off)   - Relay R2: Inactive (not assigned)   - Analog output AOC: 0-20 mA inactive (not assigned)   - 5 t d: Factory configuration (see page 4).   The assignment of CFG results directly in a return to the selected configuration.

(1)SCS, CFG and FCS can be accessed via several configuration menus but they concern all menus and parameters as a whole.


Code	
F [ 5	Return to factory settings/restore configuration (1)
	$\cap \square$ : Function inactive   $r E[\quad$ : The current configuration becomes identical to the backup configuration previously saved by SCS = Strl. rECI is only visible if the backup has been carried out. FCS automatically changes to nO as soon as this action has been performed.   In $I$ : The current configuration is replaced by the configuration selected by parameter CFG (2).   FCS automatically changes to nO as soon as this action has been performed.   - If the remote terminal option is connected to the drive, the following additional selection options appear, as long as the corresponding files have been loaded in the remote terminal's EEPROM memory ( 0 to 4 files): F IL I, F IL こ, F IL ヨ, F IL Ч. They enable the current configuration to be replaced with one of the 4 configurations that may be loaded on the remote terminal.   FCS automatically changes to nO as soon as this action has been performed.   Caution: If $n$ A $d$ appears on the display briefly once FCS has switched to nO, this means that the configuration transfer is not possible and has not been performed (different drive ratings for example). If $n t r$ appears on the display briefly once the parameter has switched to $n \mathrm{O}$, this means that a configuration transfer error has occurred and the factory settings must be restored using Inl. In both cases, check the configuration to be transferred before trying again.

For rECI, InI and FL1 to FL4 to be taken into account, the ENT key must be held down for 2 s.
(1)(SCS, CFG and FCS can be accessed via several configuration menus but they concern all menus and parameters as a whole.
(2)The following parameters are not modified by this function, they retain the same configuration:

- bFr (Standard motor frequency) page 23.
- LCC (Control via remote display terminal) page 40.
- COd (Terminal locking code) page 72.
- The parameters in the Communication menu COM-.
- The parameters in the Display menu SUP-.


The parameters can only be modified when the drive is stopped and no run command is present.
On the optional remote terminal, this menu can be accessed with the switch in the $\qquad$ position.

## Control and reference channels

Run commands (forward, reverse, etc.) and references can be sent by the following channels:

Command CMD	Reference rFr
tEr: Terminal (LI.)	AI1-AI2-AI3: Terminal
LOC: Keypad (RUN/STOP) on ATV31 0 ( ${ }^{\text {A }}$ only	AIP: Potentiometer on ATV3 1 eeeA only
LCC: Remote terminal (RJ45 socket)	LCC: ATV31 keypad or ATV3 1 eeoA keypad or remote terminal
Mdb: Modbus (RJ45 socket)	Mdb: Modbus (RJ45 socket)
CAn: CANopen (RJ45 socket)	CAn: CANopen (RJ45 socket)

## Note:

The STOP keys on the keypad and the remote terminal may retain priority (PSt parameter in the CtL-menu).
The LAC parameter in the CtL- menu can be used to select priority modes for the control and reference channels. It has 3 function levels:

- $\mathrm{LAC}=\mathrm{L1}: \quad$ Basic functions, The channels are managed in order of priority. This level is interchangeable with ATV28.
- $L A C=L 2: \quad$ Provides the option of additional functions compared with L1:
- +/- speed (motorized potentiometer)
- Brake control
- Switching for 2nd current limit
- Motor switching
- Management of limit switches
- $L A C=L 3: \quad$ Same options as with $L 2$, Management of the control and reference channels is configurable.


## These channels can be combined as follows if parameter LAC = L1 or L2.

Highest priority to lowest priority: Local forcing, CANopen, Modbus, Remote terminal, Terminal/Keypad (from right to left in the diagram below).


See the detailed diagrams on pages $\underline{33}$ and $\underline{34}$.

- On ATV3 1 drives, in factory settings mode, control and reference are managed by the terminal.
- On ATV3 100 A drives, in factory settings mode, control is via the keypad and the reference is set via the potentiometer for this keypad.
- With a remote terminal, if LCC = YES (CtL-menu), control and reference are managed by the remote terminal (reference via LFr, SEtmenu).


## Control menu CtL-

## The channels can be combined by configuration, if $L A C=L 3$.

## Combined control and reference (parameter CHCF = SIM):



Parameter rFC can be used to select channel Fr1 or Fr2 or to configure a logic input or a control word bit for remote switching of either. See the detailed diagrams on pages 35 et 37 .

## Separate control and reference (parameter CHCF = SEP):

## Reference



Parameter rFC can be used to select channel Fr1 or Fr2 or to configure a logic input or a control word bit for remote switching of either.

## Control



Parameter CCS can be used to select channel Cd1 or Cd2 or to configure a logic input or a control word bit for remote switching of either.
See the detailed diagrams on pages $\underline{35}$ and $\underline{36}$.

## Reference channel for LAC = L1 or L2



Key:


Parameter:
The black square represents the factory setting assignment (1)
(1)Except for ATV31000A: Fr1 is factory-set to AIP

## Control channel for LAC = L1 or L2

Parameters FLO, LCC and the selection of the Modbus or CANopen bus are common to the reference and control channels. Example: LCC = YES sets the drive to control and reference via the remote terminal.


Key:


Parameter:
The black square represents
the factory setting assignment
(1)Except for ATV3 1000 A: tCC is factory-set to LOC.

## Reference channel for LAC $=\mathrm{L} 3$



## Control channel for LAC = L3

## Combined reference and control

Parameters Fr1, Fr2, rFC, FLO and FLOC are common to reference and control. The control channel is therefore determined by the reference channel.
Example: If reference Fr1 = Al1 (analog input on terminal block) control is via LI (logic input on terminal block)..


Key:


Parameter:
The black square represents the factory setting assignment (1)
(1) Except for ATV31ee๗A: Fr1 and FLOC are factory-set to AIP.

## Control menu CtL-

## Control channel for LAC = L3

## Mixed mode (separate reference and control)

Parameters FLO and FLOC are common to reference and control.
Example: If the reference is in local forced mode via Al1 (analog input on terminal block) control in local forced mode is via LI (logic input on terminal block).


Key:


Parameter:
The black square represents the factory setting assignment (1)
(1) Except for ATV31eeゃA: Cd1 is factory-set to LOC.

## Control menu CtL－

There may be an incompatibility between functions（see the incompatibility table in page 14）．In this case，the first function configured will prevent the remainder being configured．


Code	Description ${ }^{\text {a }}$ Adjustment range	Factory setting
L AL	Function access level	L1
	L I：Access to standard functions．Significantly，this level is interchangeable with ATV28．   $L 己$ ：Access to advanced functions in the FUn－menu：   －＋／－speed（motorized potentiometer）   －Brake control   －Switching for second current limit   －Motor switching   －Management of limit switches   $L \exists$ ：Access to advanced functions and channel management by configuration．   Assigning LAC to L3 will restore the factory settings of the Fr1（below），Cd1（page 39），CHCF （page 39），and tCC（page 27）parameters．The latter is forced to＂2C＂on ATV31•e0A． L3 can only be restored to L2 or L1 and L2 to L1 by means of a＂factory setting＂via FCS（page 41）．   In order to change the assignment of LAC，you must press and hold down the＂ENT＂key for 2 seconds．	
Fr I	Configuration reference 1	Al1 AIP for ATV31000A
	H I I：Analog input Al1   A I ᄅ：Analog input AI2   A I ヨ：Analog input AI3   A IP：Potentiometer（ATV31e0॰A only）   If LAC $=\mathrm{L} 2$ or L3，the following additional assignments are possible：   $U P d E:(1)+$ speed／－speed via Ll．See configuration page 54.   UPdH：（1）＋speed／－speed via keys $\boldsymbol{\Delta} \boldsymbol{\nabla}$ on the ATV31 or ATV31eeeA keypad or r operation，display the frequency rFr （see page 71）．The $+/-$ speed function via the keyp terminal is controlled from the SUP－menu by setting to parameter rFr ．   If $L A C=L 3$ ，the following additional assignments are possible：   $L[ᄃ$ ：Reference via the remote terminal，LFr parameter in the SEt－menu page 19. $\Pi$ db：Reference via Modbus   ［ $\boldsymbol{A}_{n}$ ：Reference via CANopen	ote terminal．Fo d or display
$F r ?$	Configuration reference 2	no
	$\sqcap \square$ ：Not assigned   A I I：Analog input Al1   A I ᄅ：Analog input AI2   A I ヨ：Analog input AI3   A IP：Potentiometer（ATV31eeッA only）   If LAC $=\mathrm{L} 2$ or L3，the following additional assignments are possible：   $\triangle P d E:(1)+$ speed／－speed via Ll．See configuration page 54.   $U P d H:(1)+$ speed／－speed via keys $\boldsymbol{\Delta} \nabla$ on the ATV31 or ATV31e0eA keypad or operation，display the frequency $r \mathrm{Fr}$（see page 71）．The $+/$－speed function via the ke terminal is controlled from the SUP－menu by setting to parameter rFr ．   If LAC $=\mathrm{L} 3$ ，the following additional assignments are possible：   $L[C$ ：Reference via the remote terminal，LFr parameter in the SEt－menu page 19.   Пdb：Reference via Modbus   ［ $\mathrm{H}_{\mathrm{n}}$ ：Reference via CANopen	ote terminal．For d or display

## （1）CAUTION：

－You cannot assign UPdt to Fr1 or Fr2 and UPdH to Fr1 or Fr2 at the same time．Only one of the UPdt／UPdH assignments is permitted on each reference channel．
－The＋／－speed function in Fr 1 is incompatible with several functions（see page 14）．Before configuring it，these functions must be unassigned，especially the summing inputs（set SA2 to nO page 48）and the preset speeds（set PS2 and PS4 to nO page 50 ）which are assigned in the factory settings．
（2）In Fr2，the $+/-$ speed function is compatible with the preset speeds，summing inputs and the PI regulator．


Code	Description	Adjustment range	Factory setting
r F L	Reference switching		Fr 1
	Parameter rFC can be used to select channel Fr1 or Fr2 or to configure a logic input or a control bit for remote switching of Fr 1 or Fr 2 ．   $F_{r}$ I：Reference $=$ Reference 1   Fr ᄅ：Reference＝Reference 2   L I I：Logic input LI1   L I こ：Logic input LI2   L I ヨ：Logic input LI3   L I Y：Logic input LI4   L I 5：Logic input LI5   L I E：Logic input LI6   If LAC $=\mathrm{L} 3$ ，the following additional assignments are possible：   ［ I I I：Bit 11 of the Modbus control word   ［ I I 2：Bit 12 of the Modbus control word   ［ I I ヨ：Bit 13 of the Modbus control word   ［｜／4：Bit 14 of the Modbus control word   ［｜I 5：Bit 15 of the Modbus control word   ［2｜I：Bit 11 of the CANopen control word   ᄃ ㄹ I ：Bit 12 of the CANopen control word   ［2 Iヨ：Bit 13 of the CANopen control word   ᄃ ᄅ I 4：Bit 14 of the CANopen control word   L 2 I5：Bit 15 of the CANopen control word   The reference can be switched with the drive running．   Fr 1 is active when the logic input or control word bit is in state 0.   Fr2 is active when the logic input or control word bit is in state 1.		
CHLF	Mixed mode（control channels separated from reference channels）		SIM
	Can be accessed if LAC＝L3   5 І $\quad$ ：Combined   5 E P：Separate		
［d1	Configuration of control channel 1		tEr LOC for ATV31000A
	Can be accessed if CHCF＝SEP and LAC＝L3   E Er：Terminal block control   L प［：Keypad control（ATV31－00A only）   L［［：Remote terminal control   $\Pi d b$ ：Control via Modbus   L $A n$ ：Control via CAN		
［d］	Configuration of control channel 2		Mdb：
	Can be accessed if CHCF＝SEP and LAC＝L3 t Er：Terminal block control   L प［：Keypad control（ATV31•00A only）   L［［：Remote terminal control   $\Pi d b$ ：Control via Modbus   L $\mathrm{H}_{\mathrm{n}}$ ：Control via CAN		

These parameters only appear if the function has been enabled．

Code	Description	Adjustment range	Factory setting
［［ 5	Control channel switching		Cd1
	Can be accessed if CHCF＝SEP and LAC＝L3   Parameter CCS can be used to select channel Cd1 or Cd2 or to configure a logic input or a control bit for remote switching of Cd1 or Cd2．   Ld I：Control channel＝Channel 1   Lde：Control channel＝Channel 2   L I I：Logic input LI1   L I 己：Logic input LI2   L I ヨ：Logic input LI3   L I Ч：Logic input LI4   L I 5：Logic input LI5   L IG：Logic input LI6   ［ I I I：Bit 11 of the Modbus control word   ［ I I ᄅ：Bit 12 of the Modbus control word   ［ I I ヨ：Bit 13 of the Modbus control word   ［ I I Ч：Bit 14 of the Modbus control word   ［ I I 5：Bit 15 of the Modbus control word   ［己 I I：Bit 11 of the CANopen control word   ［ 〕 I ᄅ：Bit 12 of the CANopen control word   ［2 I ヨ：Bit 13 of the CANopen control word   ［ ᄅ I 4：Bit 14 of the CANopen control word   ［2 I5：Bit 15 of the CANopen control word   Channel 1 is active when the input or control word bit is in state 0.   Channel 2 is active when the input or control word bit is in state 1.		
L प	Copy channel 1 to channel 2 （copy only in this direction）		nO
	Can be accessed if LAC＝L3   $\rightarrow \square:$ No copy   5 P：Copy reference   Ld：Copy control   FL L：Copy control and reference   －If channel 2 is controlled via the terminal block，channel 1 control is not copied．   －If channel 2 reference is set via $\mathrm{Al} 1, \mathrm{AI} 2, \mathrm{AI} 3$ or AIP，channel 1 reference is not copied．   －The reference copied is FrH （before ramp）unless the channel 2 reference is set via $+/-$ speed．In this case，the reference copied is rFr （after ramp）   $\triangle$   －Copying the control and／or the reference may change the direction of rotation．		
L L L	Control via remote terminal		nO
	Parameter can only be accessed with the remote terminal option and if LAC＝L1 or L2．   $\because \square$ ：Function inactive   YE 5：Enables control of the drive using the STOP／RESET，RUN and FWD／REV buttons on the terminal．The speed reference is then given by parameter LFr in the SEt－menu．Only the freewheel，fast stop and DC injection stop commands remain active on the terminal block．If the drive／terminal connection is cut or if the terminal has not been connected，the drive locks in an SLF fault．		
P5t	Stop priority		YES
	This function gives priority to the STOP key on the keypad（ATV3 1000 A only）or the STOP key on the remote terminal，regardless of the control channel（terminal block or communication bus）．   $\rightarrow \square:$ Function inactive   YE S：STOP key priority   In order to change the assignment of PSt，you must press and hold down the＂ENT＂key for 2 seconds．		
$r \square t$	Direction of operation authorized		dFr
	Direction of operation authorized for the RUN key on the keypad（ATV3 1 eeeA only）or the RUN key on the remote terminal．   $d F_{r}$ ：Forward   dr 5：Reverse   $b \square E$ ：Both directions are authorized（except for the keypad on the ATV3 $1 \bullet \bullet \bullet$ A：Forward only）．		

These parameters only appear if the function has been enabled．


(1)SCS, CFG and FCS can be accessed via several configuration menus but they concern all menus and parameters as a whole.
(2)The following parameters are not modified by this function, they retain the same configuration:

- bFr (Standard motor frequency) page 23.
- LCC (Control via remote display terminal) page 40.
- COd (Terminal locking code) page 72.
- The parameters in the Communication menu COM-.
- The parameters in the Display menu SUP-.


The parameters can only be modified when the drive is stopped and no run command is present. On the optional remote terminal, this menu can be accessed with the switch in the $\square$ position.

Some functions have numerous parameters. In order to clarify programming and avoid having to scroll through endless parameters, these functions have been grouped in sub-menus. Like menus, sub-menus are identified by a dash after their code: PSS- $\quad$ for example.

There may be an incompatibility between functions (see the incompatibility table 14). In this case, the first function configured will prevent the remainder being configured.


Code		Description	Adjustment range	Factory setting
rPC-		Ramps		
	$r P t$	Type of ramp Defines the shape of the acceleration and deceleration ramps.		LIn
		LIn:Linear   5: S ramp   U: U ramp   ᄃ ப 5: Customized   The curve coefficient is fixed, with $\mathrm{t} 2=0.6 \times \mathrm{t} 1$   with $\mathrm{t} 1=$ set ramp time.   Customized ramps   tA1: Can be set between 0 and $100 \%$ (of ACC or AC2)   tA2: Can be set between 0 and (100\% - tA1) (of ACC or AC2)   tA3: Can be set between 0 and $100 \%$ (of dEC or dE2) tA4: Can be set between 0 and (100\% - tA3) (of dEC or dE2)		
	E A I	Start of CUS-type acceleration ramp rounded as \% of total ramp time (ACC or AC2)	O to 100	10\%

These parameters only appear if the function has been enabled.

(1)When values higher than 9999 are displayed on the drive or on the remote terminal, a dot is displayed after the thousands digit.

This type of display can lead to confusion between values which have two digits after the decimal point and values higher than 9999.

Check the value of the parameter Inr.
Example:
-If $\operatorname{Inr}=0.01$, the value 15.65 corresponds to a setting of 15.65 s .
-If $\operatorname{lnr}=1$, the value 15.65 corresponds to a setting of 15650 s .
(2)Parameter can also be accessed in the SEt- menu.

These parameters only appear if the function has been enabled.

Code		Description			Adjustment range	Factory setting
$\begin{array}{\|c\|} \hline r P C- \\ \text { (continued) } \end{array}$	Frt	Ramp switching threshold			0 to 500 Hz	0
		The second ramp is switched if the value of Frt is not equal to 0 ( 0 deactivates the function) and the output frequency is greater than Frt. Threshold ramp switching can be combined with switching via LI or bit as follows:				
		Ll or bit	Frequency	Ramp		
		$\underline{0}$	< Frt	ACC, dEC		
		$\bigcirc$	$\geq \mathrm{Frt}$	AC2, dE2		
		1	$\stackrel{\text { crit }}{ }$	AC2, dE2		
	H[2	$2^{\text {nd }}$ acceleration ramp time (1):   Enabled via logic input (rPS) or frequency threshold (Frt).			according to the value of parameter Inr (see page 43)	5 s
	dE 2	$2^{\text {nd }}$ deceleration ramp time (1):   Enabled via logic input (rPS) or frequency threshold (Frt).			according to the value of parameter Inr (see page 43)	5 s
	brA	Deceleration ramp adaptation				YES
		Activating this function automatically adapts the deceleration ramp, if this has been set at too low a value for the inertia of the load.   n $\square$ : Function inactive   $\Psi E 5$ : Function active. The function is incompatible with applications requiring:   - Positioning on a ramp   - The use of a braking resistor (no guarantee of the function operating correctly) brA is forced to nO if brake control (bLC) is assigned (page 60).				

(1)Parameter can also be accessed in the SEt- menu.

These parameters only appear if the function has been enabled.


[^0]

Code		Description	Adjustment range	Factory setting
$\begin{gathered} 5 E L- \\ \text { (continued) } \end{gathered}$	$1 d[$	Level of DC injection braking current activated via logic input or selected as stop mode (1)(3)	0 to In (2)	$0.7 \ln$ (2)
		After 5 seconds the injection current is peak limited at 0.5 Ith if it is set at a higher value.		
	$t d[$	Total DC injection braking time selected as normal stop mode (1)(3)	0.1 to 30 s	0.5 s
	$\cdots 5 t$	Freewheel stop via logic input		nO
		```\square\square: Not assigned L \| I: Logic input LI1 L I こ: Logic input LI2 L I ヨ: Logic input LI3 L 14: Logic input LI4 L I5: Logic input LI5 L IE: Logic input LI6```   The stop is activated when the input is in logic state 0 . If the input falls back to state 1 and the run command is still active, the motor will only restart if 2 -wire level control has been configured. In other cases, a new run command must be sent.		

(1)Parameter can also be accessed in the settings menu (SEt-).
(2)In corresponds to the nominal drive current indicated in the Installation Manual and on the drive rating plate.
(3)Caution: These settings are not related to the "automatic standstill DC injection" function.

These parameters only appear if the function has been enabled.

(1)Parameter can also be accessed in the settings menu (SEt-).
(2)In corresponds to the nominal drive current indicated in the Installation Manual and on the drive rating plate.

These parameters only appear if the function has been enabled.

Summing inputs

Note:

Al2 is an input 110 V , which can allow a subtraction by summing a negative signal.

See the complete diagrams on pages $\underline{33}$ and $\underline{35}$.

Application functions menu FUn-

Preset speeds

$2,4,8$ or 16 speeds can be preset, requiring $1,2,3$ or 4 logic inputs respectively.
The following order of assignments must be observed: PS2, then PS4 then PS8, then PS16.
Combination table for preset speed inputs

$\begin{aligned} & 16 \text { speeds } \\ & \text { LI (PS } 16 \text {) } \end{aligned}$	$\frac{8 \text { speeds }}{\text { LI (PS8) }}$	$\begin{aligned} & 4 \text { speeds } \\ & \text { LI (PS4) } \end{aligned}$	$\begin{aligned} & 2 \text { speeds } \\ & \text { LI (PS2) } \end{aligned}$	Speed reference
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	Reference (1)
0	0	0	1	SP2
0	0	1	0	SP3
0	0	1	1	SP4
$\underline{0}$	1	$\underline{0}$	$\underline{0}$	SP5
0	1	0	1	SP6
0	1	1	0	SP7
0	1	1	1	SP8
1	$\underline{0}$	0	0	SP9
1	0	0	1	SP10
1	0	1	0	SP11
1	0	1	1	SP12
1	1	0	0	SP13
1	1	0	1	SP14
1	1	1	0	SP15
1	1	1	1	SP16

(1)See the diagrams on page $\underline{33}$ and page $\underline{35}$: Reference $1=(S P 1)$.

(1)Parameter can also be accessed in the settings menu (SEt-).
(2)Note: The speed is always limited by parameter HSP (page 19).

These parameters only appear if the function has been enabled.

(1)Parameter can also be accessed in the settings menu (SEt-).

[^1]
Application functions menu FUn-

+/- speed

The function can only be accessed if LAC $=\mathrm{L} 2$ or L 3 (see page 38).
Two types of operation are available.
1 Use of single action buttons: Two logic inputs are required in addition to the operating direction(s).
The input assigned to the "+ speed" command increases the speed, the input assigned to the "- speed" command decreases the speed.
Note: If the "+ speed" command and the "- speed" command are activated at the same time, the "- speed" command takes priority.
2 Use of double action buttons: Only one logic input assigned to "+ speed" is required.

+ speed/- speed with double action buttons:

Description: 1 button pressed twice for each direction of rotation. Each action closes a contact.

	Released (- speed)		$\begin{array}{c}\mathbf{1}^{\text {st }} \text { press } \\ \text { (speed maintained) }\end{array}$
Forward button	$=$	$\underline{2^{\text {nd }}}$ press	
(+ speed)			

Example of wiring:
LI1: forward
LIx: reverse
Lly: + speed

This type of $+/$ - speed is incompatible with 3 -wire control.
Whichever type of operation is selected, the max. speed is set by HSP (see page 19)

Note:

If the reference is switched via rFC (see page 39) from any reference channel to another with " $+/$ - speed" the value of reference rFr (after ramp) is copied at the same time. This prevents the speed being incorrectly reset to zero when switching takes place.

Associated with the "+/-speed" function, this parameter can be used to save the reference:

- When the run commands disappear (saved to RAM)
- When the mains supply or the run commands disappear (saved to EEPROM)

On the next start-up, the speed reference is the last reference saved.
$\rightarrow \square:$ No save
r A П: Save to RAM
E E P: Save to EEPROM

These parameters only appear if the function has been enabled.

PI regulator

Diagram

The function is activated by assigning an analog input to the PI feedback (measurement).

Pages $\mathbf{3 3}$ and $\underline{35}$
PI feedback:
The PI feedback must be assigned to one of the analog inputs (AI1, AI2 or AI3).
PI reference:
The PI reference can be assigned to the following parameters in order of priority:

- Preset references via logic inputs (rP2, rP3, rP4)
- Internal reference (rPI)
- Reference Fr1 (see page 38)

Combination table for preset PI references

LI (Pr4)	$\underline{\text { LI (Pr2) }}$	$\underline{\text { Pr2 = nO }}$	Reference
			$\underline{\text { rPI or Fr1 }}$
$\underline{0}$	$\underline{0}$		$\underline{\text { rPI or Fr1 }}$
$\underline{0}$	$\underline{1}$		$\underline{r P 2}$
$\underline{1}$	$\underline{0}$	$\underline{r P 3}$	
1	$\underline{1}$		$\underline{r P 4}$

Parameters which can be accessed in the settings menu (SEt-):

- Internal reference (rPI)
- Preset references (rP2, rP3, rP4)
- Regulator proportional gain (rPG)
- Regulator integral gain (rIG)
- FbS parameter:

The FbS parameter can be used to scale the reference on the basis of the variation range of the Pl feedback (sensor rating).
E.g.: Pressure control

PI reference (process) 0-5 bar (0-100\%)
Rating of pressure sensor 0-10 bar
FbS = Max. sensor scale/Max. process
$\mathrm{FbS}=10 / 5=2$

- rSL parameter:

Can be used to set the PI error threshold above which the PI regulator will be reactivated (wake-up) after a stop due to the max. time threshold being exceeded at low speed (tLS).

- Reversal of the direction of correction (PIC): If PIC = nO, the speed of the motor will increase when the error is positive, for example: pressure control with a compressor. If PIC $=$ YES, the speed of the motor will decrease when the error is positive, for example: temperature control via a cooling fan.

"Manual - Automatic" operation with PI

This function combines the PI regulator and the switching of reference rFC (page 39). The speed reference is given by Fr2 or by the PI function, depending on the state of the logic input.

Setting up the PI regulator

1 Configuration in PI mode
See the diagram on page $5 \mathbf{5}$.
2 Perform a test in factory settings mode (in most cases, this will be sufficient).
To optimize the drive, adjust rPG or rIG gradually and independently and observe the effect on the PI feedback in relation to the reference.

3 If the factory settings are unstable or the reference is incorrect:

Perform a test with a speed reference in Manual mode (without PI regulator) and with the drive on load for the speed range of the system: - In steady state, the speed must be stable and comply with the reference and the PI feedback signal must be stable.

- In transient state, the speed must follow the ramp and stabilize quickly and the PI feedback must follow the speed.

If this is not the case, see the settings for the drive and/or sensor signal and cabling.

Switch to PI mode.

Set brA to no (no auto-adaptation of the ramp).
Set the speed ramps (ACC, dEC) to the minimum permitted by the mechanics without triggering an ObF fault.
Set the integral gain (rIG) to minimum.
Observe the PI feedback and the reference.
Do several RUN/STOP or vary the load or reference rapidly.
Set the proportional gain (rPG) in order to ascertain the ideal compromise between response time and stability in transient phases (slight overshoot and 1 to 2 oscillations before stabilizing).
If the reference varies from the preset value in steady state, gradually increase the integral gain (rIG), reduce the proportional gain (rPG) in the event of instability (pump applications), find a compromise between response time and static precision (see diagram).
Perform in-production tests throughout the reference range.

The oscillation frequency depends on the system kinematics.

Parameter	Rise time	Overshoot	Stabilization time	Static error
rPG			$=$	
rIG				

(1)Parameter can also be accessed in the settings menu (SEt-).
\square These parameters only appear if the function has been enabled.

(1)Parameter can also be accessed in the settings menu (SEt-).

These parameters only appear if the function has been enabled.

Brake control

The function can only be accessed if LAC = L2 or L3 (page 33).
This function, which can be assigned to relay R2 or to logic output AOC, enables the drive to manage an electromagnetic brake.

Principle:

Synchronize brake release with the build-up of torque during start-up and brake engage at zero speed on stopping, to prevent jolting.

Brake sequence

Settings which can be accessed in the FUn- menu:

- Brake release frequency (brL)
- Brake release current (Ibr)
- Brake release time (brt)
- Brake engage frequency (bEn)
- Brake engage time (bEt)
- Brake release pulse (bIP)

Recommended settings for brake control:
1 Brake release frequency:

- Horizontal movement: Set to O.
- Vertical movement: Set to a frequency equal to the nominal slip of the motor in Hz .

2 Brake release current (lbr):

- Horizontal movement: Set to 0.
- Vertical movement: Preset the nominal current of the motor then adjust it in order to prevent jolting on start-up, making sure that the maximum load is held when the brake is released.
3 Brake release time (brt):
Adjust according to the type of brake. It is the time required for the mechanical brake to release.
4 Brake engage frequency (bEn)
- Horizontal movement: Set to O.
- Vertical movement: Set to a frequency equal to the nominal slip of the motor in Hz. Caution: bEn maxi = LSP, you must therefore first set LSP to a sufficient value.
5 Brake engage time (bEt):
Adjust according to the type of brake. It is the time required for the mechanical brake to engage.
6 Brake release pulse:
- Horizontal movement: Set to nO.
- Vertical movement: Set to YES and check that the motor torque direction for "Forward" control corresponds to the upward direction of the load. If necessary, reverse two motor phases. This parameter generates motor torque in an upward direction regardless of the direction of operation commanded in order to maintain the load whilst the brake is releasing.

Motor frequency at min. reference. This parameter can also be modified in the SEt- menu (page 19).

Brake engage frequency threshold	$\mathrm{nO}-\mathrm{O}$ to LSP	nO

n D: Not adjusted
0 to LSP: Adjustment range (Hz)
If bLC is assigned and bEn remains equal to nO, the drive will lock on a bLF fault at the first run command.

Brake engage time	0 to 5 s	0.5 s
Brake release pulse		nO

$n \square$: Whilst the brake is releasing, the motor torque direction corresponds to the direction of rotation commanded.
YE5: Whilst the brake is releasing, the motor torque direction is always forward, regardless of the direction of operation commanded.

Check that the motor torque direction for "Forward" control corresponds to the upward direction of the load. If necessary, reverse two motor phases.
(1)In corresponds to the nominal drive current indicated in the Installation Manual and on the drive rating plate.
\square These parameters only appear if the function has been enabled.

$F \\| \square-$	Code		Description	Adjustment range	Factory setting
	LC2－		Switching for second current limit The function can only be accessed if LAC＝L2 or L3（page 33）．		
		L［2	Switching for second current limit		no
			Selecting the assigned logic input activates the function． $\cap \square$ ：Not assigned L I I：Logic input LI1 L I ב：Logic input LI2 L I ヨ：Logic input LI3 L 1 ：Logic input LI4 L I 5：Logic input LI5 L IE：Logic input LI6 If $L A C=L 3$ ，the following assignments are possible： ［ d I I：Bit 11 of the Modbus or CANopen control word ［ \＆I ᄅ：Bit 12 of the Modbus or CANopen control word ［d I ヨ：Bit 13 of the Modbus or CANopen control word ［d 1 Ч：Bit 14 of the Modbus or CANopen control word Ld 15：Bit 15 of the Modbus or CANopen control word CL1 is enabled when the logic input or control word bit is in state 0 （SEt－menu page 21）． CL2 is enabled when the logic input or control word bit is in state 1.		
		cL 己	$2^{\text {nd }}$ current limit（1）	0.25 to $1.5 \ln (2)$	$1.5 \ln (2)$

（1）Parameter can also be accessed in the settings menu（SEt－）．
（2）In corresponds to the nominal drive current indicated in the Installation Manual and on the drive rating plate．
These parameters only appear if the function has been enabled．

Code		Descrip
CHP-		Motor s The fun
	LHP	Switchin
		n D: No
		L I I:
		L 1 3 :
		L 14:
		L I5:
		L IG:
		If $L A C=$
		[d।
		[dI
		[d13
		$\begin{array}{lllll}C & d & 1 & 4 \\ C & d & 15\end{array}$
		[d/
		Ll or bit
		Ll or bit

- The motor switching function disables motor thermal protection. An external means of motor thermal protection must therefore be provided.
- If you use this function, do not use the tUn auto-tuning function (page 24) on motor 2 and do not configure tUn = rUn or POn.
- Changes to parameters are only taken into account when the drive is locked.

U 5 己	Nominal motor voltage (motor 2) given on the rating plate	According to drive rating	According to drive rating
	ATV3 1eeeM2: 100 to 240 V ATV3 1 eeeM3X: 100 to 240 V ATV3 1eeeN4: 100 to 500 V ATV31eeoS6X: 100 to 600 V		
$F r 52$	Nominal motor frequency (motor 2) given on the rating plate	10 to 500 Hz	50 Hz
	\triangle The ratio $\frac{\text { UnS (in volts) }}{\text { FrS (in Hz) }}$ must not exceed the following values ATV3 1 eeeM2: 7 max. ATV3 1 eeoM3X: 7 max. ATV31eeoN4: 14 max. ATV3 1 eeeS6X: 17 max. The factory setting is 50 Hz , or 60 Hz if bFr is set to 60 Hz .		
$\square[r]$	Nominal motor current (motor 2) given on the rating plate	0.25 to $1.5 \ln (2)$	According to drive rating
ก5P2	Nominal motor speed (motor 2) given on the rating plate	0 to 32760 RPM	According to drive rating
	0 to 9999 RPM then 10.00 to 32.76 KRPM If, rather than the nominal speed, the rating plate indicates the synchronous speed and the slip in Hz or as a \%, calculate the nominal speed as follows: 		

(1)Parameter can also be accessed in the settings menu (SEt-).
(2)In corresponds to the nominal drive current indicated in the Installation Manual and on the drive rating plate.

These parameters only appear if the function has been enabled.

(1)Parameter can also be accessed in the settings menu (SEt-).
\square These parameters only appear if the function has been enabled.

Management of limit switch

The function can only be accessed if LAC = L2 or L3 (page 33).
It can be used to manage the operation of one or two limit switches (1 or 2 directions of operation):

- Assignment of one or two logic inputs (forward limit switch, reverse limit switch)
- Selection of the type of stop (on ramp, fast or freewheel) Following a stop, the motor is permitted to restart in the opposite direction only.
- The stop is performed when the input is in state 0 . The direction of operation is authorized in state 1.

Restarting after stop caused by a limit switch

- Send a run command in the other direction (when control is via the terminals, if $\mathrm{tCC}=2 \mathrm{C}$ and $\mathrm{tCt}=$ trn, first remove all the run commands).
or
- Invert the reference sign, remove all the run commands then send a run command in the same direction as before the stop caused by a limit switch.

Code		Description	Adjustment range	Factory setting
LSt-		Management of limit switches The function can only be accessed if LAC = L2 or L3 (page 33). Caution, this function is incompatible with the "PI Regulator" function (see page 14).		
	L AF	Forward limit switch		nO
		$n \square$: Not assigned L I I: Logic input LI1 L I ᄅ: Logic input LI2 L I ヨ: Logic input LI3 L I 4: Logic input LI4 L I 5: Logic input LI5 L I G: Logic input LI6		
	L Ar	Reverse limit switch		nO
		n \square : Not assigned L \| I: Logic input LI1 L I ᄅ: Logic input LI2 L I ヨ: Logic input LI3 L \| Ч: Logic input LI4 L I 5: Logic input LI5 L I E: Logic input LI6		
	L 75	Type of limit switch stop		nSt
		$\begin{aligned} & \text { rMP: On ramp } \\ & \text { F } 5 t: \text { Fast stop } \\ & n 5 t: \text { Freewheel stop } \end{aligned}$		

These parameters only appear if the function has been enabled via the selection of a logic input.

Code	Description	Adjustment range	Factory setting
5[5	Saving the configuration (1)		no
	$\rightarrow \square$: Function inactive $5 \operatorname{tr}$ I: Saves the current configuration (but not the result of auto-tuning) to EEPROM. SCS automatically switches to nO as soon as the save has been performed. This function is used to keep another configuration in reserve, in addition to the current configuration. When drives leave the factory the current configuration and the backup configuration are both initialized with the factory configuration. - If the remote terminal option is connected to the drive, the following additional selection options will appear: FILI,FIL L,FIL ヨ,FIL4 (files available in the remote terminal's EEPROM memory for saving the current configuration). They can be used to store between 1 and 4 different configurations which can also be stored on or even transferred to other drives of the same rating. SCS automatically switches to nO as soon as the save has been performed. For Strl and FIL2 to FIL4 to be taken into account, the ENT key must be held down for 2 s .		
[F L	Source configuration		Std
	Choice of source configuration. 5 t 5: Run/stop configuration. Identical to the factory configuration apart from the I/O assignments: - Logic inputs: - LI1, LI2 (2 directions of operation): 2-wire transition detection control, LI1 = forward, LI2 $=$ reverse, inactive on ATV 31 ee000•A drives (not assigned) - LI3 to LI6: Inactive (not assigned) - Analog inputs: - Al1: Speed reference 0-10 V, inactive on ATV 31 -00000A drives (not assigned) - AI2, AI3: Inactive (not assigned) - Relay R1: The contact opens in the event of a fault (or drive switched off) - Relay R2: Inactive (not assigned) - Analog output AOC: 0-20 mA inactive (not assigned) 5 t d: Factory configuration (see page 4). The assignment of CFG results directly in a return to the selected configuration.		
F [5	Return to factory setting/restore configuration (1)		no
	$\cap \square$: Function inactive $r E[I:$ The current configuration becomes identical to the backup configuration previously saved by SCS = StrI. rECl is only visible if the backup has been carried out. FCS automatically changes to nO as soon as this action has been performed. In I: The current configuration is replaced by the configuration selected by parameter CFG (2). FCS automatically changes to nO as soon as this action has been performed. - If the remote terminal option is connected to the drive, the following additional selection options appear, as long as the corresponding files have been loaded in the remote terminal's EEPROM memory (0 to 4 files): F IL I,FIL $, F, F I L \exists, F I L$. They enable the current configuration to be replaced with one of the 4 configurations that may be loaded on the remote terminal. FCS automatically changes to nO as soon as this action has been performed. Caution: If n Ad appears on the display briefly once FCS has switched to nO, this means that the configuration transfer is not possible and has not been performed (different drive ratings for example). If $n t r$ appears on the display briefly once the parameter has switched to nO , this means that a configuration transfer error has occurred and the factory settings must be restored using InI. In both cases, check the configuration to be transferred before trying again.		

(1)SCS, CFG and FCS can be accessed via several configuration menus but they concern all menus and parameters as a whole.
(2)The following parameters are not modified by this function, they retain the same configuration:

- bFr (Standard motor frequency) page 23.
- LCC (Control via remote display terminal) page 40.
- COd (Terminal locking code) page 72 .
- The parameters in the Communication menu COM-.
- The parameters in the Display menu SUP-.

The parameters can only be modified when the drive is stopped and no run command is present On the optional remote terminal, this menu can be accessed with the switch in the position.

Code	Description ${ }^{\text {a }}$ (Factory setting
Atr	Automatic restart ${ }^{\text {a }}$
	This is only possible for 2-wire level detection control ($\mathrm{tCC}=2 \mathrm{C}$ and $\mathrm{tCt}=\mathrm{LEL}$ or PFO). $n \square$: Function inactive YE 5: Automatic restart, after locking on a fault, if the fault has disappeared and the other operating conditions permit the restart. The restart is performed by a series of automatic attempts separated by increasingly longer waiting periods: $1 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$, then 1 min for the following periods. If the restart has not taken place once the configurable time tAr has elapsed, the procedure is aborted and the drive remains locked until it is powered down then powered up. The following faults permit this function: External fault (EPF) Loss of 4-20 mA reference (LFF) CANopen fault (COF) System overvoltage (OSF) Loss of a line phase (PHF) Loss of a motor phase (OPF) DC bus overvoltage (ObF) Motor overload (OLF) Serial link (SLF) Drive overheating (OHF) The drive safety relay remains activated if this function is active. The speed reference and the operating direction must be maintained. Use 2-wire control ($\mathrm{tCC}=2 \mathrm{C}$) with $\mathrm{tCt}=\mathrm{LEL}$ or PFO (page 27). \triangle Check that an automatic restart will not endanger personnel or equipment in any way.
ERr	Max. duration of restart process 5
	5: 5 minutes ID: 10 minutes $\exists \mathrm{B}$: 30 minutes lh: 1 hour ᄅh: 2 hours $\exists h$: 3 hours Σt : Unlimited (except for OPF and PHF faults; the maximum duration of the restart process is limited to 3 hours) This parameter appears if Atr $=$ YES. It can be used to limit the number of consecutive restarts on a recurrent fault.
r $5 F$	Reset of current fault ${ }^{\text {a }}$
	$\cap \square$: Not assigned L I I: Logic input LI1 L I ᄅ: Logic input LI2 L I ヨ: Logic input LI3 L I Ч: Logic input LI4 L I 5: Logic input LI5 L I E: Logic input LI6

These parameters only appear if the function has been enabled.

Code	Description	Factory setting
F L r	Flying restart（automatic catching a spinning load on ramp）	nO
	Used to enable a smooth restart if the run command is maintained after the following events： －Loss of line supply or disconnection －Reset of current fault or automatic restart －Freewheel stop The speed given by the drive resumes from the estimated speed of the motor at the time of the restart， then follows the ramp to the reference speed． This function requires 2－wire control $(\mathrm{tCC}=2 \mathrm{C})$ with $\mathrm{tCt}=\mathrm{LEL}$ or PFO ． $n \square$ ：Function inactive YE 5：Function active When the function is operational，it activates at each run command，resulting in a slight delay （1 second max．）． FLr is forced to nO if brake control（bLC）is assigned（page 60）． 4 Do not use the flying restart function（FLr＝YES）with auto－tuning on power－up（rSC or POn page 24）．	
$E \in F$	External fault	no
	$n \square$ ：Not assigned L I I：Logic input LI1 L I 己：Logic input LI2 L I ヨ：Logic input LI3 L I Ч：Logic input LI4 L I 5：Logic input LI5 L I G：Logic input LI6 If $L A C=L 3$ ，the following assignments are possible： ［ d I I：Bit 11 of the Modbus or CANopen control word ［ d I ᄅ：Bit 12 of the Modbus or CANopen control word ［ d I ヨ：Bit 13 of the Modbus or CANopen control word ［ d I Ч：Bit 14 of the Modbus or CANopen control word L d I5：Bit 15 of the Modbus or CANopen control word	
LEE	Configuration of external fault	HIG
	$L D:$ The external fault is detected when the logic input or the bit assigned to EtF is at state 0 ． H IL：The external fault is detected when the logic input or the bit assigned to EtF is at state 1.	
$E P L$	Stop mode in the event of an external fault EPF	YES
	$n \square$ ：Fault ignored YE 5：Fault with freewheel stop r П P：Fault with stop on ramp $F 5 t$ ：Fault with fast stop	
$\square P L$	Configuration of motor phase loss fault	YES
	$\cap \square$ ：Function inactive ЧE 5：Triggering of OPF fault पA［：No fault triggered but management of the output voltage in order to avoid an overcurrent when the link with the motor is re－established and flying restart even if $\mathrm{FLr}=\mathrm{nO}$ ．To be used with downstream contactor． OPL is forced to YES if bLC is other than nO（page 60）．	
$I P L$	Configuration of line phase loss fault	YES
	This parameter is only accessible on 3－phase drives． $\cap \square$ ：Fault ignored YE 5：Fault with fast stop	
DHL	Stop mode in the event of a drive overheating fault OHF	YES
	n ロ：Fault ignored ЧE 5：Fault with freewheel stop r П P：Fault with stop on ramp $F 5 t$ ：Fault with fast stop	
－L L	Stop mode in the event of a motor overload fault OLF	YES
	\cap ロ：Fault ignored YE 5：Fault with freewheel stop r П P：Fault with stop on ramp $F 5 t$ ：Fault with fast stop	

The parameters can only be modified when the drive is stopped and no run command is present．Modifications to parameters Add，tbr， tFO，AdCO and bdCO are only taken into account following a restart．
On the optional remote terminal，this menu can be accessed with the switch in the \square position．

Code	Description	Adjustment range	Factory setting
Add	Modbus：Drive address	1 to 247	1
tbr	Modbus：Transmission speed		19200
	4．日： 4800 bps 9．6： 9600 bps I9．ㄹ： 19200 bps（Caution：The remote terminal can only be used with this value．）		
EFD	Modbus communication format		8 E 1
	BC I： 8 data bits，odd parity， 1 stop bit 任 I： 8 data bits，even parity， 1 stop bit（Caution：The remote terminal can only be used with this value．） 柏 I： 8 data bits，no parity， 1 stop bit $\theta \cap$ 己： 8 data bits，no parity， 2 stop bits		
$t \in \square$	Modbus：Time－out	0.1 to 10 s	10 s
Ad［口	CANopen：Drive address	O to 127	0
bd［	CANopen：Transmission speed		125
	ID．D： 10 kbps ट ロ．： 20 kbps 5 ロ．प： 50 kbps I 己 $5 . \square: 125 \mathrm{kbps}$ ट 5 ロ．В： 250 kbps 5—०．ロ： 500 kbps I प००： 1000 kbps		
$E r[\square$	CANopen：Error registry（read－only）		
	■：＂No error＂ I：＂Bus off error＂ ᄅ：＂Life time error＂ 7：＂CAN overrun＂ 4：＂Heartbeat error＂		
$F L \square$	Forced local mode		nO
	$\cap \square$ ：Not assigned L｜I：Logic input LII L I ᄅ：Logic input LI2 L I ヨ：Logic input LI3 L｜Ч：Logic input LI4 L I 5：Logic input LI5 L I E：Logic input LI6 In forced local mode，the terminal block and display terminal regain control of the drive．		
FLDL	Selection of the reference and control channel in forced local mode Can only be accessed if LAC $=3$		Al1 AIP for ATV3 1 •00A

In forced local mode，only the speed reference is taken into account．Pl functions，summing inputs，etc．are not active．
See the diagrams on pages 33 to 36 ．
A｜I：Analog input Al1，logic inputs LI
A I 2：Analog input AI2，logic inputs LI
A I ヨ：Analog input AI3，logic inputs LI
A IP：Potentiometer（type A drives only），RUN／STOP buttons
L［［：Remote terminal：LFr reference page 19，RUN／STOP／FWD／REV buttons．

Parameters can be accessed with the drive running or stopped.

On the optional remote terminal, this menu can be accessed with the switch in any position.
Some functions have numerous parameters. In order to clarify programming and avoid having to scroll through endless parameters, these functions have been grouped in sub-menus.
Like menus, sub-menus are identified by a dash after their code: LIA- for example.
When the drive is running, the value displayed is that of one of the monitoring parameters. By default, the value displayed is the output frequency applied to the motor (rFr parameter).
Whilst the value of the new monitoring parameter required is being displayed, press and hold down the "ENT" key (2 seconds) to confirm the change of monitoring parameter and store this. From now on, the value of this parameter will be displayed while the drive is running (even after it has been disconnected).
If the new choice is not confirmed by pressing the "ENT" key a second time, the drive will return to the previous parameter after it has been switched off.

Note: After disconnection or loss of line supply, the parameter displayed is always the drive status (rdY for example). The selected parameter is displayed after a run command.

	Code	Description	Variation range
	LFr	Frequency reference for control via built－in terminal or remote terminal	0 to 500 Hz
	$r P 1$	Internal PI reference	0 to 100\％
	FrH	Frequency reference before ramp（absolute value）	0 to 500 Hz
	$r F r$	Output frequency applied to the motor	-500 Hz to +500 Hz
		This parameter is also used for the $+/-$ speed f keypad or display terminal． It displays and checks operation（see page 38） not saved，and it will be necessary to go back i function again．	tion using the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys on the the event of loss of line supply， rFr is SUP－and rFr to enable the $+/-$ speed
	$\begin{gathered} \hline 5 P d l \\ \text { or } \\ 5 P d 己 \\ \text { or } \\ \text { 5Pdヨ } \end{gathered}$	Output value in customer units SPd1 or SPd2 or SPd3 depending on the SdS parameter，see page $\mathbf{2 2}$（SPd3 in factory settings mode）．	
	$L E r$	Current in the motor	
	ロPr	Motor power	
		100\％＝Nominal motor power，calculated using the parameters entered in the drC－menu．	
	ULп	Line voltage（gives the line voltage via the DC bus，motor running or stopped）	
	EHr	Motor thermal state	
		100\％＝Nominal thermal state 118%＝＂OLF＂threshold（motor overload）	
	tHd	Drive thermal state	
		100\％＝Nominal thermal state $118 \%=$＂OHF＂threshold（motor overload）	
	LFE	Last fault	
		bLF：Brake control fault L F F：Configuration（parameters）incorrect LF I：Configuration（parameters）invalid ᄃ $\square F$ ：Communication fault line 2 （CANopen） LrF：Capacitor pre－charge fault E E F：EEPROM memory fault EPF：External fault $I \cap F$ ：Internal fault LFF：4－20 mA fault on AI3 $n \square F$ ：No fault saved $\square\llcorner F$ ：DC bus overvoltage fault प［ F：Overcurrent fault DHF：Drive overheating fault पL F：Motor overload fault DPF：Motor phase loss fault प 5 F ：Line supply overvoltage fault P H F ：Line supply phase loss fault 5 ［ F：Motor short－circuit fault（phase，earth） $5 L F$ ：Modbus communication fault S—F：Motor overspeed fault $t \cap F$ ：Auto－tuning fault $U 5 F$ ：Line supply undervoltage fault	
	ロヒr	Motor torque	
		100%＝Nominal motor torque，calculated using the parameters entered in the drC－ menu．	
	$r E H$	Operating time	0 to 65530 hours
		Total time the motor has been powered up： 0 to 9999 （hours），then 10.00 to 65.53 （kilo－hours）． Can be reset to zero by the $r \operatorname{Pr}$ parameter in the FLt－menu（see page 68）．	

Code	Description
CDd	Terminal locking code
	Enables the drive configuration to be protected using an access code. When access is locked using a code, only the monitoring parameters can be accessed, with only a temporary choice of parameter displayed.

- $\square F F$: No access locking codes
- To lock access, enter a code (2 to 9999). The display can be incremented using Now press "ENT". "On" appears on the screen to indicate that the access have been locked.
- \square_{n} : A code is locking access (2 to 9999)
- To unlock access, enter the code (incrementing the display using Δ) and press "ENT". The code remains on the display and access is unlocked until the next power down. Access will be locked again on the next power-up.
- If an incorrect code is entered, the display changes to "On" and access remain locked. - XXXX: Access is unlocked (the code remains on the screen).
- To reactivate locking with the same code when access have been unlocked, return to "On" using the ∇ button then press "ENT". "On" appears on the screen to indicate that access have been locked.
- To lock access with a new code when access have been unlocked, enter a new code (increment the display using $\boldsymbol{\Delta}$ or) and press "ENT". "On" appears on the screen to indicate that access have been locked.
- To clear locking when access have been unlocked, return to "OFF" using the button and press "ENT". "OFF" remains on the screen. Access is unlocked and will remain unlocked until the next restart.

tU5		State of auto-tuning
		ヒ 月 : The default stator resistance value is used to control the motor. $P E \cap d$: Auto-tuning has been requested but not yet performed. Pr पL: Auto-tuning in progress. F A IL: Auto-tuning has failed. $d \square \cap E$: The stator resistance measured by the auto-tuning function is used to manage the drive. $5 \operatorname{trd}$: The cold stator resistance (rSC other than nO) that is used to control the motor.
$U d P$		Indicates the ATV3 1 firmware version. E.g.: 1102 = V1.1 IEO2.
LIA-		Logic input functions
	$\begin{array}{ll} L & I I A \\ L & I Z A \\ L & I \exists A \\ L & I 4 A \\ L & I 5 A \\ L & I G A \end{array}$	Can be used to display the functions assigned to each input. If no functions have been assigned, nO is displayed. Use the \boldsymbol{A} and $\boldsymbol{\nabla}$ arrows to scroll through the functions. If a number of functions have been assigned to the same input, check that they are compatible.
	L 15	Can be used to display the state of the logic inputs (using the segments of the display: high = 1, low = 0) State 1 State 0 Example above: LI1 and LI6 are at 1, LI2 to LI5 are at 0.
AIA-		Analog input functions
	$\begin{array}{lll} A & I & I A \\ A & I & A \\ A & I \exists \end{array}$	Can be used to display the functions assigned to each input. If no functions have been assigned, nO is displayed. Use the and $\boldsymbol{\nabla}$ arrows to scroll through the functions. If a number of functions have been assigned to the same input, check that they are compatible.

Servicing

The ATV 31 does not require any preventative maintenance. It is nevertheless advisable to perform the following regularly:

- Check the condition and tightness of connections.
- Ensure that the temperature around the unit remains at an acceptable level and that ventilation is effective (average service life of fans: 3 to 5 years depending on the operating conditions).
- Remove any dust from the drive.

Assistance with maintenance, fault display

If a problem arises during setup or operation, ensure that the recommendations relating to the environment, mounting and connections have been observed.

The first fault detected is stored and displayed, flashing, on the screen: the drive locks and the fault relay (RA - RC) contact opens, if it has been configured for this function.

Clearing the fault

Cut the power supply to the drive in the event of a non-resettable fault.
Wait for the display to go off completely.
Find the cause of the fault in order to correct it.
The drive is unlocked after a fault by:

- Switching off the drive until the display disappears completely, then switching on again
- Automatically in the cases described in the "automatic restart" function (FLt- menu, Atr = YES)
- Via a logic input when this input is assigned to the "fault reset" function (FLt-menu, rSF = Lle)

Monitoring menu:

This is used to prevent and find the causes of faults by displaying the drive status and its current values.
Spares and repairs:
Consult Schneider Electric product support.

Drive does not start, no fault displayed

- If the display does not light up, check the power supply to the drive and check the wiring of inputs AI1 and AI2 and the connection to the
- RJ45 connector.
- The assignment of the "Fast stop" or "Freewheel stop" functions will prevent the drive from starting if the corresponding logic inputs are not powered up. The ATV3 1 then displays " nSt " in freewheel stop mode and "FSt" in fast stop mode. This is normal since these functions are active at zero so that the drive will be stopped safely if there is a wire break.
- Check that the run command input(s) have been actuated in accordance with the chosen control mode (tCC parameter in the I-Omenu).
- If an input is assigned to the limit switch function and this input is at zero, the drive can only be started up by sending a command for the opposite direction (see page 64).
- If the reference channel (page $\mathbf{3 3}$) or the control channel (page 34) is assigned to Modbus or CANopen, the drive displays nSt on power-up and remains at stop until the communication bus sends a command.
- If the LED on the DC bus is lit and nothing appears on the display, check that there is no short-circuit on the 10 V power supply.
- If the drive displays "rdY" and refuses to start, check that there is no short-circuit on the 10 V power supply and check the wiring of inputs AI1 and AI2 and the connection to the RJ45 connector.

Faults which cannot be reset automatically

The cause of the fault must be removed before resetting by switching off and then on again. $\mathrm{CrF}, \mathrm{SOF}, \mathrm{tnF}, \mathrm{bLF}$ and OPF faults can also be reset remotely via logic input (rSF parameter in the FLt-menu page 66).

Fault	Probable cause	Remedy
bLF Brake sequence	- Brake release current not reached - Brake engage frequency $b E n=$ nO (not adjusted) when brake logic bLC is assigned.	- Check the drive/motor connection. - Check the motor windings. - Check the lbr setting in the FUn- menu (see page 60). - Carry out the recommended adjustment of bEn (see pages 59 and 60).
$\begin{aligned} & L r F \\ & \text { Capacitor load circuit } \end{aligned}$	- Load relay control fault or charging resistor damaged	- Replace the drive.
$\begin{aligned} & \text { EEF } \\ & \text { EEPROM fault } \end{aligned}$	- Internal memory fault	- Check the environment (electromagnetic compatibility). - Replace the drive.
InF Internal fault	- Short-circuit on the 10 V power supply - Internal fault	- Check the circuits connected to the 10 V . - Check the wiring of inputs AI1 and AI2 and the connection to the RJ45 connector. - Check the environment (electromagnetic compatibility). - Replace the drive.
$\begin{aligned} & \text { DLF } \\ & \text { Overcurrent } \end{aligned}$	- Incorrect parameters in the SEtand drC- menus - Inertia or load too high - Mechanical blockage	- Check the SEt- and drC- parameters. - Check the size of the motor/drive/load. - Check the state of the mechanism.
$\begin{aligned} & 5[F \\ & \text { Motor short-circuit } \end{aligned}$	- Short-circuit or earthing at the drive output - Significant earth leakage current at the drive output when several motors are connected in parallel	- Check the cables connecting the drive to the motor, and the motor insulation. - Reduce the switching frequency. - Connect chokes in series with the motor.
$\begin{aligned} & \hline 5 \square F \\ & \text { Overspeed } \end{aligned}$	- Instability or - Driving load too high	- Check the motor, gain and stability parameters. - Add a braking resistor. - Check the size of the motor/drive/load.
$\begin{aligned} & E \cap F \\ & \text { Auto-tuning fault } \end{aligned}$	- Special motor or motor whose power is not suitable for the drive - Motor not connected to the drive	- Use the L or the P ratio (see Uft page 24). - Check the presence of the motor during auto-tuning. - If a downstream contactor is being used, close it during auto-tuning.

Faults which can be reset with the automatic restart function, after the cause has disappeared

These faults can also be reset by switching the drive off and on again or via a logic input (rSF parameter in the FLt- menu page 66)

Fault	Probable cause	Remedy
$\begin{aligned} & \text { L } \square F \\ & \text { CAnopen fault } \end{aligned}$	- Interruption in communication on the CANopen bus	- Check the communication bus. - Please refer to the product-specific documentation.
$E P F$ External fault	- According to user	- According to user
$\begin{aligned} & \text { LF F } \\ & \text { Loss of 4-20mA } \end{aligned}$	- Loss of the 4-20 mA reference on input AI3	- Check the connection on input AI3.
DbF Overvoltage during deceleration	- Braking too sudden or driving load	- Increase the deceleration time. - Install a braking resistor if necessary. - Activate the brA function (page 44) if it is compatible with the application.
$\square H F$ Drive overheated	- Drive temperature too high	- Check the motor load, the drive ventilation and the environment. Wait for the drive to cool down before restarting.
पL F Motor overload	- Triggered by excessive motor current - Incorrect value of parameter rSC	- Check the ItH setting (motor thermal protection) (page 20), check the motor load. Wait for the drive to cool down before restarting. - Measure rSC again (page 24).
DPF Motor phase loss	- Loss of one phase at drive output - Downstream contactor open - Motor not connected or motor power too low - Instantaneous instability in the motor current	- Check the connections from the drive to the motor. - If a downstream contactor is being used, set OPL to OAC (FLt- menu page 67). - Test on a low power motor or without a motor: In factory settings mode, motor phase loss detection is active (OPL = YES). To check the drive in a test or maintenance environment without having to switch to a motor with the same rating as the drive (particularly useful in the case of high power drives), deactivate motor phase loss detection (OPL = no). - Check and optimize the UFr (page 20), UnS and nCr (page 23) parameters and perform auto-tuning with tUn (page 24).
$\square 5 F$ Overvoltage	- Line voltage too high - Disturbed line supply	- Check the line voltage.
PHF Line phase failure	- Drive incorrectly supplied or a fuse blown - Failure of one phase - 3-phase ATV31 used on a single phase line supply - Unbalanced load This protection only operates with the drive on load.	- Check the power connection and the fuses. - Reset. - Use a 3-phase line supply. - Disable the fault by setting IPL = nO (FLt- menu page 67).
$5 L F$ Modbus fault	- Interruption in communication on the Modbus bus - Remote terminal enabled (LCC = YES page 40) and terminal disconnected.	- Check the communication bus. - Please refer to the product-specific documentation. - Check the link with the remote terminal.

Faults which can be reset as soon as their cause disappears

Fault	Probable cause	Remedy
LFF Configuration fault	- The current configuration is inconsistent.	- Return to factory settings or call up the backup configuration, if it is valid. See the FCS parameter in the $\mathrm{I}-\mathrm{O}-$, drC-, CtL- or FUn- menu.
[FI Configuration fault via serial link	- Invalid configuration The configuration loaded in the drive via the serial link is inconsistent.	- Check the configuration loaded previously. - Load a consistent configuration.
USF Undervoltage	- Line supply too low - Transient voltage dip - Damaged load resistor	- Check the voltage and the voltage parameter. USF trip threshold ATV31e000M2: 160V ATV3100eथM3X: 160V ATV31e0e日N4: 300V ATV31eeeeS6X: 430V - Replace the drive.

Drive ATV 31
Customer ID no. (if applicable).
1st level adjustment parameter

Code	Factory setting	Customer setting
bFr	50	

Settings menu $5 E L-$

Code	Factory setting	Customer setting
ACC	3 s	S
AC2	5 s	S
dE2	5 s	s
dEC	3 s	s
tA1	10\%	\%
tA2	10\%	\%
tA3	10\%	\%
tA4	10\%	\%
LSP	0 Hz	Hz
HSP	bFr	Hz
ItH	According to drive rating	A
UFr	20\%	\%
FLG	20\%	\%
StA	20\%	\%
SLP	100 Hz	\%
IdC	$0.7 \ln$ (1)	A
tdC	0.5 s	S
tdC1	0.5 s	s
SdC1	$0.7 \ln (1)$	A
tdC2	0 s	S
SdC2	$0.5 \ln (1)$	A
JPF	0 Hz	Hz
JF2	0 Hz	Hz
JGF	10 Hz	Hz
rPG	1	
rIG	1 / s	/ s
FbS	1	
PIC	nO	

Code	Factory setting	Customer setting
rP2	30\%	\%
rP3	60\%	\%
rP4	90\%	\%
SP2	10 Hz	Hz
SP3	15 Hz	Hz
SP4	20 Hz	Hz
SP5	25 Hz	Hz
SP6	30 Hz	Hz
SP7	35 Hz	Hz
SP8	40 Hz	Hz
SP9	45 Hz	Hz
SP10	50 Hz	Hz
SP11	55 HZ	Hz
SP12	60 Hz	Hz
SP13	70 Hz	Hz
SP14	80 Hz	Hz
SP15	90 Hz	Hz
SP16	100 Hz	Hz
CLI	$1.5 \ln (1)$	A
CL2	$1.5 \ln (1)$	A
tLS	0 (no time limit)	s
rSL	0	
UFr2	20\%	\%
FLG2	20\%	\%
StA2	20\%	\%
SLP2	100\%	\%
Ftd	bFr	Hz
ttd	100\%	\%
Ctd	In (1)	A
SdS	30	
SFr	4 kHz	kHz

(1)In corresponds to the nominal drive current indicated in the Installation Manual and on the drive rating plate.

These parameters only appear if the corresponding function has been selected in another menu. The majority can also be accessed and adjusted in the function configuration menu. Those which are underlined appear in factory settings mode.

Configuration/Settings table

Motor control menu \square

| Code | Factory setting | Customer setting |
| :--- | :--- | :--- | :--- |
| bFr | 50 Hz | Hz |
| UnS | According to drive rating | V |
| FrS | 50 Hz | Hz |
| nCr | According to drive rating | A |
| nSP | According to drive rating | RPM |
| COS | According to drive rating | |
| rSC | nO | |

Code	Factory setting	Customer setting
tUS	tAb	
UFt	n	
nrd	YES	
SFr	4 kHz	kHz
tFr	60 Hz	Hz
SrF	nO	

Code	Factory setting	Customer setting
tCC	2C ATV3 1 eeeA: LOC	
tCt	trn	
rrS	if tCC $=2 \mathrm{C}$, LI2 if tCC $=3 \mathrm{C}, \mathrm{LI3}$ if $\mathrm{tCC}=$ LOC: nO	mA
CrL3	4 mA	mA
CrH3	20 mA	

Code	Factory setting	Customer setting
AO1t	OA	
dO	nO	
r1	FLt	
r2	nO	

Control menu $\underset{\square L L-}{ } \rightarrow \square$

Code	Factory setting	Customer setting
LAC	L1	
Fr1	Al1 AIP for ATV31 $00 \bullet A$	
Fr2	nO	
rFC	Fr1	
CHCF	SIM	
Cd1	tEr LOC for ATV31 $0 \bullet A ~$	

Code	Factory setting	Customer setting
Cd2	Mdb	
CCS	Cd1	
COp	nO	
LCC	nO	
PSt	YES	
rOt	dFr	

[^2]

Code		Factory setting	Customer setting
rPC-	rPt	LIn	
	tA1	10\%	\%
	tA2	10\%	\%
	tA3	10\%	\%
	tA4	10\%	\%
	Inr	0.1	
	ACC	3 s	s
	dEC	3 s	s
	rPS	no	
	Frt	0	Hz
	AC2	5 s	s
	dE2	5 s	s
	brA	YES	
StC-	Stt	Stn	
	FSt	no	
	dCF	4	
	dCl	no	
	IdC	0.7 In	A
	tdC	0.5 s	s
	nSt	no	
AdC-	AdC	YES	
	tdC1	0.5 s	s
	SdC1	$0.7 \ln (1)$	A
	tdC2	0 s	s
	SdC2	$0.5 \ln (1)$	A
SAI-	SA2	AI2	
	SA3	no	
PSS-	PS2	$\begin{aligned} & \text { If tCC = 2C: LI3 } \\ & \text { If tCC }=3 \mathrm{C}: \mathrm{LI4} \\ & \text { If } \mathrm{tCC}=\mathrm{LOC}: \mathrm{LI} 3 \end{aligned}$	
	PS4	$\begin{aligned} & \text { If tCC }=2 \mathrm{C}: \mathrm{LI4} \\ & \text { If tCC }=3 \mathrm{C}: \mathrm{nO} \\ & \text { If } \mathrm{tCC}=\mathrm{LOC}: ~ \mathrm{LI} 4 \end{aligned}$	
	PS8	nO	
	PS16	no	
	SP2	10 Hz	Hz
	SP3	15 Hz	Hz
	SP4	20 Hz	Hz
	SP5	25 Hz	Hz
	SP6	30 Hz	Hz
	SP7	35 Hz	Hz
	SP8	40 Hz	Hz
	SP9	45 Hz	Hz
	SP10	50 Hz	Hz
	SP11	55 Hz	Hz
	SP12	60 Hz	Hz
	SP13	70 Hz	Hz
	SP14	80 Hz	Hz
	SP15	90 Hz	Hz
	SP16	100 Hz	Hz

Code		Factory setting	Customer setting
JOG-	JOG	$\begin{aligned} & \text { If tCC = 2C: nO } \\ & \text { If tCC }=3 \mathrm{C}: ~ \mathrm{LI4} \\ & \text { If tCC }=\text { LOC: } \mathrm{nO} \end{aligned}$	
	JGF	10 Hz	Hz
UPd-	USP	no	
	dSP	no	
	Str	no	
PI-	PIF	no	
	rPG	1	
	rIG	1	
	FbS	1	
	PIC	no	
	Pr2	no	
	Pr4	no	
	rP2	30\%	\%
	rP3	60\%	\%
	rP4	90\%	\%
	rSL	0	
	PII	no	
	rPI	0\%	\%
bLC-	bLC	no	
	brL	According to drive rating	Hz
	Ibr		A
	brt	0.5 s	s
	bEn	no	Hz
	bEt	0.5 s	s
	bIP	no	
LC2-	LC2	no	
	CL2	$1.5 \ln (1)$	A
CHP-	CHP	no	
	UnS2	According to drive rating	V
	FrS2	50 Hz	Hz
	nCr 2	According to drive rating	A
	nSP2		RPM
	COS2		
	UFt2	n	
	UFr2	20\%	\%
	FLG2	20\%	\%
	StA2	20\%	\%
	SLP2	100 Hz	Hz
LSt-	LAF	no	
	LAr	no	
	LAS	nSt	

(1)In corresponds to the nominal drive current indicated in the Installation Manual and on the drive rating plate.
$\square \begin{aligned} & \text { These parameters only appear if the } \\ & \text { corresponding function has been enabled. They }\end{aligned}$ can also be accessed in the SEt menu.

Code	Factory setting	Customer setting
Atr	nO	
tAr	5	
rSF	nO	
FLr	nO	
EtF	nO	
LEt	HIG	
EPL	YES	
OPL	YES	
IPL	YES	
OHL	YES	

Code	Factory setting	Customer setting
DLL	YES	
SLL	YES	
COL	YES	
tnL	YES	
LFL	nO	
LFF	10 Hz	
drn	nO	
StP	nO	
InH	nO	
rPr	nO	

Communication menu $\square \square \square-\square$

Code	Factory setting	Customer setting
Add	1	
tbr	19200	
tFO	8 E 1	
ttO	10 s	
AdCO	0	

Code	Factory setting	Customer setting
bdCO	125	
FLO	nO	
FLOC	Al1 AIP for ATV3 1eeeA	

FLD	69	OLL	67
FL 1	69	$\square P L$	67
FLr	67	DPr	71
Fr I	38	－E r	71
Fre	38	P IL	57
FrH	71	P IF	57
Fr 5	23	Pre	57
Fr 52	62	Pr 4	57
Frt	44	P 516	51
F5t	45	P5 2	50
Ftd	22	P54	50
H5P	19	P5日	50
lbr	60	P5t	40
IdL	46	r I	28
1 nH	68	$r 2$	29
Inr	43	r F［	39
$I P L$	67	$r r^{\prime}$	71
It H	20	$r 1 L$	57
$J F ?$	21	r \quad t	40
」LF	52	$r P$ e	57
」ロロ	52	$r P \exists$	57
$J P F$	21	$r P 4$	57
L AL	38	$r P G$	57
LAF	64		58
LAr	64	$r P 1$	71
LA5	64	$r r^{\text {r }}$	68
L L 2	61	$r P 5$	43
L L L	40	$r P t$	42
L L r	71	rrs	27
LEE	67	r 5［	24
$L F F$	68	r 5F	66
$L F L$	68	r SL	58
LFr	71	rth	71
LFE	71	5月己	48
L I IA	72	5月	48
LİA	72	$5[5$	25
LİA	72	5d［1	47
L 14月	72	5d［2	47
L 15月	72	5d5	22
LI6A	72	5 Fr	25
L 15	72	$5 L L$	68
$L 5 P$	19	$5 L P$	20
nLr	23	$5 L P 2$	63
nLre	62	5 P 10	51
nrd	25	5×11	51
$\square 5 P$	23	$5 P 12$	51
пSP	62	5 P19	51
n 5 t	46	$5 P 14$	51
DHL	67	5 P 15	51

5 P16	51
$5 P$ 2	51
5Pヨ	51
$5 P 4$	51
$5 P 5$	51
5PG	51
$5 P 7$	51
5 P日	51
$5 P 9$	51
5Pd	71
$5 P d 己$	71
5 Pdヨ	71
$5 \mathrm{r} F$	25
5 ¢ A	20
5ヒR己	63
	68
5tr	54
5tt	45
t ${ }^{\text {¢ }}$ I	42
ヒ日	43
ヒ 月 ヨ	43
t 月 $^{\text {¢ }}$	43
t ${ }^{\text {r }}$	66
tbr	69
t［L	27
	27
$t d[$	46
$t \begin{aligned} & \text { c } \\ & \text { l }\end{aligned}$	47
$t d[$ 己	47
t Fr	25
t Hd	71
t Hr	71
$t L 5$	21
$t \cap L$	68
t td	22
ヒヒロ	69
ヒUn	24
$t \cup 5$	24
$t \cup 5$	72
$U d P$	72
$U F r$	20
UFr己	63
$U F E$	24
UFE己	63
UL	71
$U \cap 5$	23
U 5 己	62
U 5 P	54

Index of functions

+/- speed	53
2-wire/3-wire control	27
Analog/logic output AOC/AOV	28
Automatic restart	66
Automatic standstill DC injection	47
Brake control	59
CANopen: Drive address	69
Control and reference channels	31
Control channel switching	40
Current limit	21
DC injection via logic input	45
Deceleration ramp adaptation	44
Drive thermal protection	$\underline{6}$
Drive ventilation	6
Fast stop via logic input	45
Flying restart (automatic catching a spinning load on ramp)	67
Forced local mode	69
Freewheel stop via logic input	46
Function access level	38
Jog operation	52
Management of limit switch	64
Modbus: Drive address	69
Motor control auto-tuning	24
Motor switching	62
Motor thermal protection	7
Drive thermal protection	6
Pl regulator	55
Preset speeds	49
Ramp switching	43
Ramps	42
Reference switching	39
Relay r 1	28
Relay r 2	29
Reset of current fault	66
Return to factory settings/restore configuration	26
Saving the configuration	25
Selection of the type of voltage/frequency ratio	24
Skip frequency	$\underline{21}$
Stop modes	45
Summing inputs	48
Switching for second current limit	61
Switching frequency	$\underline{25}$

Schneider Electric China www．schneider－electric．cn

北京市朝阳区将台路 2 号和乔丽晶中心施耐德电气大廈邮编： 100016电话：（010） 84346699传真：（010） 84501130

Schneider Electric Building，Chateau Regency，No． 2 Jiangtai Road，Chaoyang District，Beijing 100016 China． Tel：（010） 84346699 Fax：（010） 84501130

由于标准和材料的变更，文中所述特性和本资料中的图像只有经过我们的业务部门确认以后，才对我们有约束。
－本手册采用生态纸印刷

[^0]: These parameters only appear if the function has been enabled.

[^1]: \square
 These parameters only appear if the function has been enabled.

[^2]: These parameters only appear if the corresponding function has been enabled

