

EBN53c

EBS53c

- Accessories	$>7-1$ page
- Trip curves	$>8-1 \sim 8-2$ page
- Drawings	$>9-9 \sim 9-10$ page
- Connection and mounting	$>10-2$ page

Ratings

Frame size
Type and pole

Note) 1. Depth by door cut size: c1 for large cut, c2 for small cut
2. Do not test withstand voltage or insulation resistance test between poles to avoid the damage of the PCB.
3. 4-pole product's ampacity on neutral conductor is equal to or less than 50% of the rated current.
4. Rated non-trip current sensitivity is equal to or less than 50% of the rated current sensitivity.
5. Life cycle means not guarantee but limitation
(Quality guarantee: On/Off frequency on the basis of IEC60947-2 within the term of guarantee.)

Ordering types

Breaker types
Instantaneous type

Note) EBS53c/20/30: EBS53c, Rated current 20A, Rated residual current 30 mA

Time delay type

Note) EBS53c/20/30: EBS53c, Rated current 20A, Time delay type 1A1s

Accessories

Electrical auxiliaries

AX	Auxiliary switch
$\mathbf{A L}$	Alarm switch
$\mathbf{A X} \mathbf{+ A L}$	Combination switch

Maximum possibilities

T-position Not available
R-position Option of AX or AL or AX+AL
Note) For more detail see 7-1 page

External accessories

EBN50c EBS50c	EBH50c	Name
IB13	IB23	Insulation barrier
TCL13	TCL23	Terminal cover (Long) - Single type, D-handle type, N-handle type
TCS13	TCS23	Terminal cover (Short) - Single type, D-handle type, N-handle type
N-30c	$\mathrm{N}-40 \mathrm{c}$	Rotary handle (Direct)
DH100	DH125	Rotary handle (Direct)
DHK100	DHK125	Rotary handle (Direct, key lock)
EH100	EH125	Rotary handle (Extended)
-	RTB2	Rear terminal (Bar)
RTR1	RTR2	Rear terminal (Round)
Handle lock		
Note) For more detail see 7-9 ~ 7-23 page - Single type: This cover is used without auxiliary handle. - D-handle type: This cover is used with D-handle. - N -handle type: This cover is used with N -handle.		

EBN63c

EBS63c

For more information

- Accessories	$>7-1$ page
- Trip curves	$>8-1$ page
- Drawings	$>9-9$ page
- Connection and mounting	$>10-2$ page

Ratings

Frame size
Type and pole

Note) 1. Depth by door cut size: c1 for large cut, c2 for small cut
2. Do not test withstand voltage or insulation resistance test between poles to avoid the damage of the PCB.
3. 4-pole product's ampacity on neutral conductor is equal to or less than 50% of the rated current.
4. Rated non-trip current sensitivity is equal to or less than 50% of the rated current sensitivity.
5. Life cycle means not guarantee but limitation
(Quality guarantee: On/Off frequency on the basis of IEC60947-2 within the term of guarantee.)

Ordering types

Breaker types
Instantaneous type

Note) EBS63c/60/30: EBS63c, Rated current 60A, Rated residual current 30mA

Time delay type

Accessories

Electrical auxiliaries

AX	Auxiliary switch
$\mathbf{A L}$	Alarm switch
$\mathbf{A X}+\mathbf{A L}$	Combination switch

Maximum possibilities

T-position Not available

R-position Option of $A X$ or $A L$ or $A X+A L$
Note) For more detail see 7-1 page

External accessories

EBS60c EBN60c	Name
IB13	Insulation barrier
TCL13	Terminal cover (Long) - Single type, D-handle type, N-handle type
TCS13	Terminal cover (Short) - Single type, D-handle type, N-handle type
N-30c	Rotary handle (Direct)
DH100	Rotary handle (Direct)
DHK100	Rotary handle (Direct, key lock)
EH100	Rotary handle (Extended)
RTB1	Rear terminal (Bar)
RTR1	Rear terminal (Round)
Handle lock	

Note) For more detail see 7-9 ~ 7-23 page

- Single type: This cover is used without auxiliary handle.
- D-handle type: This cover is used with D-handle.
- N -handle type: This cover is used with N -handle.

EBN103c

For more information

- Accessories	$>7-1$ page
- Trip curves	$>8-1$ page
- Drawings	$>9-9$ page
- Connection and mounting $>10-2$ page	

Ratings

Frame size			100AF		
Type and pole			N-type		
2-pole (2-sensor)			EBN102c		
3 -pole (3-sensor)			EBN103c		
4-pole (3-sensor)			EBN104c		
Rated current, In			60-75-100A		
Rated impulse withstand voltage, Uimp			6 kV		
Instantaneous type	Rated residual current, I Δ n		30, 100, 100/200/500, 100/300/500mA (Adjustable)		
	Residual current off-time at $\mathrm{I} \Delta \mathrm{n}$		$\leq 0.1 \mathrm{sec}$		
	Rated operational voltage, Ue		AC: 220/460V		
Time delay	Rated residual current		0.1/0.2/0.5/1A, 0.1/0.4/1/2A (Adjustable)		
type	Intentional time delay		0/0.2/0.5/1s, 0.5/1/1.5/2s (Adjustable)		
Wiring system	2-pole (2-sensor)		102W		
	3 -pole (3-sensor)		102W, 103W, 303W		
	4-pole (3-sensor)		102W, 103W, 3Ø3W, 304W		
Rated short-circuit breaking capacity, Icu			N-type		
		460 V	18kA		
		415 V	18 kA		
		220/250V	35kA		
lcs=\% $\times 1 \mathrm{lcu}$			100\%		
Protective function			Overload, short-circuit and ground fault		
Type of trip unit			Thermal-magnetic		
Magnetic trip range			$12 \times \ln$		
Life cycle ${ }^{\text {Note5) }}$	Mechanical		25,000 operations		
	Electrical		10,000 operations		
Connection	Standard		Front connection		
	Optional		Rear connection		
Mounting	Standard		Screw fixing		
Dimensions (mm)		Pole	2 p	3 p	4 p
		a	75	75	100
		b	130	130	130
		c1 Note1)	60	60	60
		c2 Note1)	64	64	64
		d	82	82	82
Weight, kg		Standard	0.5	0.7	0.9
Certification		Pole	$2 p$	3 p	4 p
CE marking		(\in	\bigcirc	O	\bigcirc

Note) 1. Depth by door cut size: c1 for large cut, c2 for small cut
2. Do not test withstand voltage or insulation resistance test between poles to avoid the damage of the PCB.
3. 4-pole product's ampacity on neutral conductor is equal to or less than 50% of the rated current.
4. Rated non-trip current sensitivity is equal to or less than 50% of the rated current sensitivity
5. Life cycle means not guarantee but limitation
(Quality guarantee: On/Off frequency on the basis of IEC60947-2 within the term of guarantee.)

Ordering types

Breaker types

Note) EBN103c/100/30: EBN103c, Rated current 100A, Rated residual current 30mA

Time delay type

Note) EBN103c/100/30: EBN103c, Rated current 100A, Time delay type 1A1s

Accessories

Electrical auxiliaries

AX	Auxiliary switch
$\mathbf{A L}$	Alarm switch
$\mathbf{A X}+\mathbf{A L}$	Combination switch

Maximum possibilities
T-position Not available
R-position Option of AX or AL or AX+AL
Note) For more detail see 7-1 page

External accessories

EBN100c	Name
IB13	Insulation barrier
TCL13	Terminal cover (Long) - Single type, D-handle type, N-handle type TCS13
Terminal cover (Short)	
- Single type, D-handle type, N-handle type	
N-30c	Rotary handle (Direct)
DH100	Rotary handle (Direct)
DHK100	Rotary handle (Direct, key lock)
EH100	Rotary handle (Extended)
RTB1	Rear terminal (Bar)
RTR1	Rear terminal (Round)
Handle lock	

Note) For more detail see 7-9~ 7-23 pageNote) For more detail see 82 page

- Single type: This cover is used without auxiliary handle.
- D-handle type: This cover is used with D-handle.
- N -handle type: This cover is used with N -handle.

125AF ELCB EBS125c, EBH125c

EBS103c

EBH103c

For more information

- Accessories	$>7-1$ page
- Trip curves	>-2 page
- Drawings	$>9-10$ page
- Connection and mounting	$>10-2$ page

Ratings

Frame size			125AF			
Type and pole			S-type		H-type	
		2-pole (2-sensor)	-		-	
		3 -pole (3-sensor)	EBS103c		EBH103c	
		4-pole (3-sensor)	EBS104c		EBH104c	
Rated current, In			15-20-30-40-50-60-75-100-125A			
Rated impulse withstand voltage, Uimp			6 kV			
Instantaneous type	Rated residual current, I Δ n		30, 100, 100/200/500, 100/300/500mA (Adjustable)			
	Residual current off-time at $I \Delta n$		$\leq 0.1 \mathrm{sec}$			
	Rated operational voltage, Ue		AC: $220 / 460 \mathrm{~V}$			
Time delay type	Rated residual current		0.1/0.2/0.5/1A, 0.1/0.4/1/2A (Adjustable)			
	Intentional time delay		0/0.2/0.5/1s, 0.5/1/1.5/2s (Adjustable)			
Wiring system		2-pole (2-sensor)	-			
		3 -pole (3-sensor)	102W, 103W, 303W			
		4-pole (3-sensor)	1Ø2W, 1Ø3W, 3Ø3W, 304W			
Rated short-c capacity, Icu	rcuit breaking		N-type		S-type	
	AC	460 V	37kA		50kA	
		415 V	$37 \mathrm{kA}$		50kA	
		220/250V	85kA		100kA	
Ics=\%xIcu			100\%		100\%	
Protective function			Overload, short-circuit and ground fault			
Type of trip unit			Thermal-magnetic			
Magnetic trip range			$12 \times \ln$ (30A and under: 400A)			
Life cycle ${ }^{\text {Note5) }}$	Mechanical		25,000 operations			
	Electrical		10,000 operations			
Connection	Standard		Front connection			
	Optional		Rear connection			
Mounting	Standard		Screw fixing			
Dimensions (mm)		Pole	3 p	4 p	3 p	4p
		a	90	120	90	120
		b	155	155	155	155
		c1 Note1)	60	60	60	60
		c2 Note1)	64	64	64	64
		d	82	82	82	82
Weight, kg		Standard	1	1.2	1	1.2
Certification		Pole	$3 p$	4 p	3 p	$4 p$
CE marking		(ϵ	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Note) 1. Depth by door cut size: c1 for large cut, c2 for small cut
2. Do not test withstand voltage or insulation resistance test between poles to avoid the damage of the PCB.
3. 4-pole product's ampacity on neutral conductor is equal to or less than 50% of the rated current.
4. Rated non-trip current sensitivity is equal to or less than 50% of the rated current sensitivity
5. Life cycle means not guarantee but limitation
(Quality guarantee: On/Off frequency on the basis of IEC60947-2 within the term of guarantee.)

Ordering types

Breaker types

Note) EBS103c/100/30: EBS103c, Rated current 100A, Rated residual current 30mA

Time delay type

Note) EBS103c/100/30: EBS103c, Rated current 100A, Time delay type 1A1s

Accessories

Electrical auxiliaries

$\mathbf{A X}$	Auxiliary switch
$\mathbf{A L}$	Alarm switch
$\mathbf{A X}+\mathbf{A L}$	Combination switch

Maximum possibilities
T-position Not available

R-position Option of $A X$ or $A L$ or $A X+A L$
Note) For more detail see 7-1 page

External accessories

EBS125c EBH125c	Name
IB23	Insulation barrier
TCL23	Terminal cover (Long) - Single type, D-handle type, N-handle type
TCS23	Terminal cover (Short) - Single type, D-handle type, N-handle type
N-40c	Rotary handle (Direct)
DH125	Rotary handle (Direct)
DHK125	Rotary handle (Direct, key lock)
EH125	Rotary handle (Extended)
RTB2	Rear terminal (Bar)
RTR2	Rear terminal (Round)
Handle lock	

Note) For more detail see 7-9 ~ 7-23 page

- Single type: This cover is used without auxiliary handle
- D-handle type: This cover is used with D-handle.
- N -handle type: This cover is used with N -handle.

EBN203c

EBS203c

For more information

- Accessories	$>7-1$ page
- Trip curves	$>8-3$ page
- Drawings	$>9-11$ page
- Connection and mounting $>10-2$ page	

Ratings

Note) 1. Depth by door cut size: c 1 for large cut, c 2 for small cut
2. Do not test withstand voltage or insulation resistance test between poles to avoid the damage of the PCB.
3. 4-pole product's ampacity on neutral conductor is equal to or less than 50% of the rated current.
4. Rated non-trip current sensitivity is equal to or less than 50% of the rated current sensitivity.
5. Life cycle means not guarantee but limitation
(Quality guarantee: On/Off frequency on the basis of IEC60947-2 within the term of guarantee.)

Ordering types

Breaker types

Note) EBS203c/250/30: EBS203c, Rated current 250A, Rated residual current 30 mA

Time delay type

| EBS203c | | | 250 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^0]
Accessories

Electrical auxiliaries

$\mathbf{A X}$	Auxiliary switch
$\mathbf{A L}$	Alarm switch
$\mathbf{A X}+\mathbf{A L}$	Combination switch

Maximum possibilities

T-position Not available
R-position Option of AX or AL or AX+AL
Note) For more detail see 7-1 page

External accessories

EBN250c EBS250c EBH250c	Name
IB23	Insulation barrier
TCL33	Terminal cover (Long) - Single type, D-handle type, N-handle type
TCS33	Terminal cover (Short) - Single type, D-handle type, N-handle type
N-50c	Rotary handle (Direct)
DH250	Rotary handle (Direct)
DHK250	Rotary handle (Direct, key lock)
EH250	Rotary handle (Extended)
RTB3	Rear terminal (Bar)
RTR3	Rear terminal (Round)
Handle lock	

Note) For more detail see7-9 ~ 7-23 page

- Single type: This cover is used without auxiliary handle
- D-handle type: This cover is used with D-handle.
- N -handle type: This cover is used with N -handle.

EBS403c

EBL404c

For more information

- Accessories	$>7-2$ page
- Trip curves	>-4 page
- Drawings	-12 page
- Connection and mounting $>10-3$ page	

Ratings

Note) 1. Depth by door cut size: c1 for large cut, c2 for small cut
2. Do not test withstand voltage or insulation resistance test between poles to avoid the damage of the PCB.
. 4-pole product's ampacity on neutral conductor is equal to or less than 50% of the rated current
4. Rated non-trip current sensitivity is equal to or less than 50% of the rated current sensitivity.
5. Life cycle means not guarantee but limitation
(Quality guarantee: On/Off frequency on the basis of IEC60947-2 within the term of guarantee.)

Ordering types

Breaker types

Instantaneous type

EBS403c		400		/	30
Code	Frame size/ Pole	Code	Rated current	Code	Rated residual current
EBN403c	EBN 400AF 3P	250	250A	30	30 mA
EBN404c	EBN 400AF 4P	300	300A	100/200/500	100/200/500mA
EBS403c	EBS 400AF 3P	350	350A		
EBS404c	EBS 400AF 4P	400	400A		
EBH403c	EBH 400AF 3P				
EBH404c	EBH 400AF 4P				
EBL403c	EBH 400AF 3P				
EBL404c	EBH 400AF 4P				

Note) EBS403c/400/30: EBS403c, Rated current 400A, Rated residual current 30mA

Time delay type

EBS403c		400		/	2A2s	
Code	Frame size/ Pole	Code	Rated current	Code	Rated residual current	Intentional time delay
EBN403c	EBN 400AF 3P	250	250A	2A2s	2 A	2s
EBN404c	EBN 400AF 4P	300	300A			
EBS403c	EBS 400AF 3P	350	350A			
EBS404c	EBS 400AF 4P	400	400A			
EBH403c	EBH 400AF 3P					
EBH404c	EBH 400AF 4P					
EBL403c	EBH 400AF 3P					
EBL404c	EBH 400AF 4P					

[^1]
Accessories

Electrical auxiliaries

AX	Auxiliary switch	
	Auxiliary swit	b d
AL	Alarm switch	R T
SHT	Shunt trip	\bigcirc
UVT	Undervoltage trip	10\% \% \%

Maximum possibilities

T-position	Not available
R-position	Option of 2AX, 2AL and SHT or UVT

Note) For more detail see 7-2 page

B-43B	Insulation barrier
T1-43A	Terminal cover (Long) - 2, 3pole
T1-44A	Tergle type, N-handle type
N-70	Rotary handle (Direct)
E-70U	Rotary handle (Extended)
MI-43	Mechanical interlock - 2, 3pole
MI-44	Mechanical interlock - 4pole

Note) For more detail see7-9 ~ 7-23 page

EBS803c

For more information

- Accessories	$>7-2$ page
- Trip curves	$>8-4$ page
- Drawings	$>9-14$ page
- Connection and mounting $>10-3$ page	

Ratings

Note) 1. Depth by door cut size: c1 for large cut, c2 for small cut
Do not test withstand voltage or insulation resistance test between poles to avoid the damage of the PCB.
3. Rated non-trip current sensitivity is equal to or less than 50% of the rated current sensitivity.
4. Life cycle means not guarantee but limitation
(Quality guarantee: On/Off frequency on the basis of IEC60947-2 within the term of guarantee.)

Ordering types

Breaker types

Instantaneous type

EBS803c		800		/	30
Code	Frame size/ Pole	Code	Rated current	Code	Rated residual current
EBN803c	EBN 800AF 3P	500	500A	30	30 mA
EBS803c	EBS 800AF 3P	630	630A	100/200/500	100/200/500mA
EBL803c	EBH 800AF 3P	700	700A		
		800	800A		

Note) EBS803c/800/30: EBS803c, Rated current 800A, Rated residual current 30 mA

Time delay type

Note) EBS803c/800/30: EBS803c, Rated current 800A, Time delay type 2A2s

Accessories

Electrical auxiliaries

AX		얼잉ํ잉
AX	Auxiliary switch	b d
AL	Alarm switch	R T
SHT	Shunt trip	P
UVT	Undervoltage trip	0\%0\%

Maximum possibilities

T-position	Not available
R-position	Option of 2AX, 2AL and SHT or UVT

Note) For more detail see 7-2 page

E-80U

$\mathrm{N}-80$

External accessories

B-33C	Insulation barrier
T1-63A	Terminal cover (Long) - 2, 3pole
T1-64A	Terminal cover (Long) - 4pole
N-80	Rotary handle (Direct)
E-80U	Rotary handle (Extended)
MI-83S	Mechanical interlock - 2, 3pole
MI-84S	Mechanical interlock - 4pole

Note) For more detail see 7-9 ~ 7-23 page

Electrical auxiliaries of 100~250AF

Maximum possibilities

Position	Type	ABN100c		ABH125c		ABH250c	EBN100c	EBH125c	EBH250c
		2p	3/4p	2p	3/4p	2/3/4p	2/3/4p	3/4p	2/3/4p
Left-hand seat	AX	-	1	-	1	1	1	1	1
	AL	-	1	-	1	1	1	1	1
	$A X+A L$	-	1	-	1	1	1	1	1
Right-hand seat	AX	1	1	1	1	1	-	-	-
	AL	1	1	1	1	1	-	-	-
	AX + AL	1	1	1	1	1	-	-	-
	SHT/UVT	1	1	1	1	1	-	-	-

Electrical auxiliaries of 400~800AF

Maximum possibilities

Position	Type	MCCB $(400 \sim 800 A F)$	ELCB $(400 \sim 800 A F)$
Left-hand seat	AX	2	2
	AL	$\mathrm{SHT} / \mathrm{UVT}$	2
Right-hand	AX	1	2
	AL	2	1
	$\mathrm{SHT} / \mathrm{UVT}$	2	-

Accessories

Combinations of accessories

Series		MCCB（30～250AF）				MCCB（400～800AF）	MCCB（1，000～1200AF）
Type	N－type	ABE 32b	ABE 33b	ABN 52C ABN 62C ABN 102c／102e	ABN 53c／54c ABN 63c／64c ABN 103c／104c，ABN 103e／104e ABN 202c／203c／204c	ABN 402c／403c／404c ABN 802c／803c／804c	－
	S－type	－	－	ABS 32c ABS 52c ABS 62c ABS 102c	ABS 33c／34c ABS 53c／54c ABS 63c／64c ABS 103c／104c ABS 202c／203c／204c	ABS 402c／403c／404c ABS 802c／803c／804c	ABS 1003b ABS 1004b ABS 1203b ABS 1204b ABS 1203bE
	H－type	－	－	$\begin{aligned} & \text { ABH 52C } \\ & \text { ABH 102C } \end{aligned}$	ABH 53c／54c ABH 103c／104c ABH202c／203c／204c	ABH 402c／403c／404c	－
	L－type	－	－	ABL 102c	ABL 103c／104c ABL 202c／203c／204c	ABL 402c／403c／404c ABL 802c／803c／804c	ABL 1003b ABL 1004b ABL 1203b ABL 1204b
Pole		2 pole	3 pole	2 pole	2，3， 4 pole	2，3， 4 pole	3， 4 pole
AX		$\bigcirc \square$	\bigcirc	\bigcirc	$\bigcirc \square \square \bigcirc$	$\bigcirc \square \square \bigcirc$	$\square \bigcirc$
AX2					$\bigcirc \square$	$\bigcirc \bigcirc \square \square \square \bigcirc$	$\square \mathrm{H}_{0}^{\circ} \mathrm{O}$
AX3（4）						00 O（0）	
AL		$\bullet \square$	－\＃	$\square \bullet$	－\dagger 回	－\square	$\square \bullet$
AL2					$\bullet \square \bullet$	$\bullet \square \bullet$	$\square \stackrel{\square}{\square}$
AL3（4）						$\bullet \bullet$ $\bullet(\bullet)$	
SHT（UVT）		$\square \square$	$\square \square$	$\square \square$	$\square \square \square$	口 \square	$\square \square$
SHT（UVT） 2						$\square \square \square$	
$A X+A L$				－ 0		¢ $\quad \square$	H0
AX＋AL2						－回	
AX＋AL3（4）						$\bullet \bullet$ $\bullet(\bullet)$ \bigcirc	
AX2＋AL							18 0
AX2＋AL2					（1）	$\bullet \bullet$ $O-$	
AX2＋AL3（4）						$\bullet \bullet$ $\bullet(\bullet)$ $\bigcirc \bigcirc$	
AX3（4）＋AL							
AX3（4）＋AL2						$\bullet \bullet$ （1） $0 \bigcirc$ O（0）	
AX3（4）＋AL3（4）							
AX＋SHT（UVT）		$\bigcirc \square \square$	$\bigcirc \square \square$		$\bigcirc \square \square$	$\bigcirc 口_{\square \square \square}^{\square}$	$\square \square \bigcirc$

Accessories

Test lead wire (30~250AF)

Note) 1. When you touch the lead wire under energized condition, you will be in danger of electric shock.
2. Do not energize on both ends of lead wire
3. Do not pull out the lead wire excessively or impact on the product.

Terminal block type

Combinations of accessories

Auxiliary and alarm switch

Auxiliary switch (AX)

Auxiliary switch is for applications requiring remote "On" and "Off" indication.
Each switch contains two contacts having a common connection.
One is open and the other closed when the circuit breaker is open, and viceversa.

Alarm switch (AL)

Alarm switches offer provisions for immediate audio or visual indication of a tripped breaker due to overload, short circuit, shunt trip, or undervoltage release conditions.
They are particularly useful in automated plants where operators must be signaled about changes in the electrical distribution system. This switch features a closed contact when the circuit breaker is tripped automatically. In other words, this switch does not function when the breaker is operated manually.
Its contact is open when the circuit breaker is reset.

Combination switch (AX+AL)

It consists of one auxiliary switch (AX) and one alarm switch (AL) in a body to connect into the same position of the breaker.

Contact (AX+AL)
MCCB

Rating ($A X+A L$)

Conventional thermal current, lth	5A				
Rated operational current, le	Voltage, Ue	Current, le			
		Resistive load	Inductive load	Minimum laod current	Applicable MCCB/ELCB
AC 50/60Hz	125 V	5	3		
	250 V	3	2		Metasol
	500 V	-	-	5 V DC 160mA	MCCB/ELCB
DC	30 V	4	3	30 V DC 30 mA	30~250AF
	125 V	0.4	0.4		400~800AF
	250 V	0.2	0.2		

Accessories

The shunt trip opens the mechanism in response to an externally applied voltage signal. The releases include coil clearing contacts that automatically clear the signal circuit when the breaker has tripped. This is not available for ELCBs of 30~250AF .

Rating for 30~250AF

Terminal block type (TBT)

Lead wire type (LWT)

Control voltage, Ue		Power consumption		Applicable MCCB/ELCB
		AC (VA)	DC (W)	
Voltage	DC 12V	-	1.5	Metasol MCCB ABN100c ABH125c ABH250c
	AC/DC 24~30V	1.5	1.5	
	AC/DC 48~60V	1.5	1.5	
	AC/DC 100~130V	1.5	1.5	
	AC/DC 200~250V	1.5	1.5	
	AC 380~440V	1.5	-	
	AC 440~500V	1.5	-	
Max.opening time		50 ms (max.)		
Tightening torque of terminal screw		$8.2 \mathrm{kgf} \cdot \mathrm{~cm}$		

Rating for 400~800AF

Control voltage, Ue	Power consumption		
	V	mA	W
AC/DC 24~48V	AC 24	14	0.3
AC 100~240/DC 100~220V	DC 24	15.4	0.4
AC 380~550V	AC 48	14	0.7
$\begin{aligned} & \text { Note: Range of operational voltage } \\ & \text { AC: } 0.85 \sim 1.1 \mathrm{Vn} \\ & \text { DC: } 0.75 \sim 1.25 \mathrm{Vn} \end{aligned}$	DC 48	16	0.8
	AC 110	6	0.7
	DC 110	6.6	0.7
	AC 220	6.8	1.5
	DC 200	7.6	1.5
	AC 440	4.3	1.9
	AC 480	4.4	3.3
	AC 550	4.6	2.4

Undervoltage release, UVT

The undervoltage release automatically opens a circuit breaker when voltage drops to a value ranging between 20% to 70% of the line voltage. The operation is instantaneous, and after tripping, the circuit breaker cannot be re-closed again until the voltage returns to 85% of line voltage.
Continuously energized, the undervoltage release must be operating before the circuit breaker can be closed.
This is not available for ELCBs of 30~250AF .

- Range of tripping voltage: $0.2 \sim 0.7 \mathrm{Vn}$
- Reset and closing of a breaker is possible when the control voltage is over 0.85 Vn
- Frequency (Only AC: 45Hz ~ 65Hz

Terminal block type (TBT)

Rating for 30~250AF

Control voltage, Ue		Power consumption		
		AC (VA)	DC (W)	mA
Voltage	AC/DC 24V	0.64	0.65	27
	AC/DC 48V	1.09	1.1	23
	AC/DC 100~110V	0.73	0.75	5.8
	AC/DC 200~220V	1.21	1.35	5.4
	AC 380~440V	1.67	-	3.8
	AC 440~480V	1.68	-	3.5
Max.opening time		50 ms (max.)		
Tightening torque of terminal screw		$8.2 \mathrm{kgf} \cdot \mathrm{cm}$		
Operating	Trip	20~70\% Vn		
voltage range	Reset/Closing	$\geq 0.85 \mathrm{Vn}$		

Rating for 400~800AF

Control voltage, Ue	Trip voltage	Reset/closing voltage	Time rating
AC/DC 48			
AC/DC 100~125			
AC 200~240 / DC 200~240	. AC: $85 \sim 1.1 \mathrm{Vn}$	AC: $0.2 \sim 0.7 \mathrm{Vn}$	Continuous
AC 380~440	. DC: $85 \sim 1.25 \mathrm{Vn}$	\cdot DC: $0.2 \sim 0.7 \mathrm{Vn}$	
AC 440~480			

Terminal numbering

Auxiliary switch (AX)	Alarm switch (AL)	Shunt trip (SHT)	Undervoltage trip (UVT)
$A_{01} 1 \mathrm{AX}_{1} 1 \quad \mathrm{AX}_{02} \mathrm{AX}_{2} 2$			

Accessories

External accessories
Wide range of external accessories provides user-friendly solution for mounting, cable connection, insulation, safety lock and remote control.

Rotary handles

Direct type
 (DH 30~250AF)

Key lock (DH 30~250AF)

(N 30~250AF)

The rotary handle operating mechanism is available in either the direct version or in the extended version on the compartment door. It is always fitted with a compartment door lock and on a request it can be supplied with a key lock in the open position.

Direct type, D-handle and N-handle

- D-handle: Directly mountable to a circuit breaker. Trip button is built as standard. Key lock type is optional.
- N-handle: Directly mountable to a circuit breaker. Door is locked in the Off state. handle size is greater than D-handle.

Extended type, E-handle

It is used in case direct type handle can not be applied because of the longer distance between the breaker and the panel door.

Type

Direct type	Direct type (Key lock)	Extended type	Breaker type	
			МССВ	ELCB
N-30c	-	-	ABN50c/60c/100c/100e*	EBN50c/60c/100c
DH100	DHK100	EH100	ABS30c/50c/60c*	EBS30c/50c/60c
N-40c	-	-	ABS125c* ABH50c/125c* ABL125c*	EBS125c EBH50c/125c
DH125	DHK125	EH125		
N-50c	-	-	ABN/S/H/L250c	EBN/S/H250c
DH250	DHK250	EH250		
N-70	-	E-70U	ABN/S/H/L400c	EBN/S/H/L400c
N-80	-	E-80U	ABN/S/L800c	EBN/S/L800c

Note: Padlock type for N -handle

- On or Off state type - Only Off state type
* DH100 and DH125 cannot be mounted on 2-pole products.

Extended type

(30~250AF)

(400~800AF)
Type suffix according to the mounting position

S-type
Line

Load

L-type

R-type

Accessories

D-handle

MCCB and D-handle
ABN100c ABH125c

Tripping MCCB \& install type

Installing the D-handle

ABN100c, EBN100c

ABH125c, EBH125c
ABH250c, EBH250c

Cutting panel

LSELECTRIC 7-12

Accessories

D-handle

Operating test

CAUTION

If the door is opened with much pressure when the position of handle is On or trip, the handle lock lever will be demaged.

Trip position: Panel door can't be opened

Locking system

E-handle

MCCB and E-handle
ABN100c

Tripping MCCB \& install type

Accessories

E-handle

Installing the E-handle

ABN100c, EBN100c
ABH125c, EBH125c
ABH250c, EBH250c

Cutting panel

Note: An extension shaft that must be adjusted to the distance between back of circuit breaker and door

Operating test

\triangle CAUTION

If the door is opened with much pressure when the position of handle is On or trip, the handle lock lever will be demaged.

Trip position: Panel door can't be opened

Locking system

Note : In case of EH100/125/250 Semi Type, it is possible to lock E-handle only in the condition of OFF.

Accessories

N-handle

How to mount

1) Drilling on the panel door
(1) All the N handles require the same size of mounting hole.
(2) Drill the holes according to the Fig. 1

<Fig 1>

(2) Mounting base

(1) Prepare a mounting base according to the Fig. 2. The distance between the door panel and the mounting base should be A+2. Dimension A is shown in the Fig.
(2) In the case of horizontal mounting turn the breaker mounting holes by 90 degrees

(3) Fixing

(1) Fixing a breaker and a handle at the same time.
a) As shown in the Fig. 3 a breaker and a handle can be fixed at the same time on a mounting base with the 4 (long) screws enclosed.

<Fig 3>
b) Have the breaker handle and the lever of N handle be located in the position shown in Fig. 4.

<Fig 4>
(2) Fixing a handle and a breaker step by step
a) Check if there is any thin membrane in the mounting hole of the breaker cover and remove it, If exists.
b) Have the breaker handle and the lever of N handle be located in the position shown in Fig. 4.
c) Fix the N handle on the breaker with the 2 (Short) screws enclosed.
d) Fix the breaker on a mounting base with the 2 (Long) screws
(4) Fixing front plate and lock plate
(1) Set the front plate and the locking plate on the door as shown in Fig. 6 fix them with screws.
(2) Adjust if front plate or handle is at tilt against the breaker .
(3) Verify that locking plate and locking lever interact on each other properly when the panel door is closed. If necessary adjust them by following instructions.
a) In the event the panel door is not fully closed

This happens if the distance between the door panel and the mounting base the panels of the door is short. Loosen the adjusting screw in the lock plate and move the platein the direction of the arrow as shown in Fig. 9.
b) In the event the door does not lock after closing the door This happens if the distance between the door panel and the mounting base the panels of the door is long. Loosen the adjusting screw in the lock plate and move the plate in the direction of the arrow as shown in Fig. 10.

<Fig 5>

<Fig 9>

LSElectric 7-18

Accessories

<Fig 11>

<Fig 12>

<Fig 13>
($\mathrm{N}-30,40,50$)

($\mathrm{N}-70, \mathrm{~N}-80$)

<Fig 15>

N-handle

(1) Operation in the door closed

(1) To have the breaker On turn the handle to be vertical. <Fig. 11>
(2) To have the breaker Off turn the handle to be horizontal. <Fig. 12>
(3) If the breaker is tripped, the handle points to the Trip position.
(4) To reset the breaker turn the handle to Reset position.

(2) Unlocking the panel door

(1) The door is locked and will not open at On, Off and Trip status.
(2) To unlock the door from Off or Trip status turn the handle toward OPEN direction. (Unlocked after taking the hand off the handle.)
(3) To unlock the door from on state turn the Release screw clockwise <Fig. 13>

(3) Operation of the breaker in the door open

(1) When the door is open the breaker will not be on as the lock lever operates.
(2) To release the locking pull the lock lever to be nearly horizontal position. Then the breaker can be closed. <Fig. 14>
(3) If the door is closed the lock lever will be reset automatically.

Padlocking

(1) Lockable at On or Off state with a padlock. (Padlock is not supplied)

- Lockable at Off state with a padlock is an optional spec.
(2) Pull the lock plate on the front of the handle and fasten the lock. <Fig. 15>
(3) If the breaker is tripped after padlocking at on state, the handle will point to the trip.
(4) Padlock diameter should be $3.5 \sim 6 \mathrm{~mm}$

Dimensions for N -handle hinges

7-19

Locking device

It is a handle locking device which is used by being fixed on a breaker.
You can use the padlock in the On or Off position of the breaker handle

Fixed locking device

Locking device types	MCCB	ELCB
Handle Lock, ABN100c	ABS30c, ABS50c, ABS60c, ABN50c, ABN60c, ABN100c, ABN100d, ABN100e	EBS30c, EBS50c, EBS60c, EBN50c, EBN60c, EBN100c
Handle Lock, ABH125c	ABS125c, ABH50c, ABH125c, ABL125c	EBS125c, EBH50c, EBH125c

How to use

The handle lock is designed to be easily attached to the front of the breaker.
(1) Set the breaker handle to the Off position. (Figures 1 and 2)
(2) Secure the locking device on the cover of the circuit breaker. (Figures 1 and 2)
(3) Use the padlock in the On or Off position. (Figures 3, 4 and 5)

- For 100AF/125AF/250AF MCCBs

<Fig. 1>

<Fig. 3>
- For 400AF / 800AF MCCBs

<Fig. 5>

Accessories

Terminal covers

The terminal covers are applied to the circuit-breaker to prevent accidental contact with live parts and thereby guarantee protection against direct contacts.
Two types by length are available and provide IP20 degree of protection.
Also, covers ara classified in to 2 different type: Independent, Attachable and detachable with D or N handle

- Short type covers, TCS:

For fixed circuit-breakers with rear terminals and for moving parts of plug-in.

- Long type covers, TCL:

For fixed circuit-breakers with front, front extended, front for cables terminals.

Terminal covers						Pole	Applied breaker		Size extended (A), mm	
Short type			Long type							
Inde	D-handle	N -handle	Inde	D-handle	N-handle		MCCB	ELCB	Short type	Long type
TBS22	-	-	-	-	-	2 P				
TBS23	-	-	-	-	-	3P	ABE30b	-	10	-
TCS12	-	-	TCL12		-	2 P				
TCS/T-12	-	-	TCLT-12	-	-	2 P				
TCS13	TCS13	TCS13	TCL13	TCL13	TCL13	3P	ABN50c/60c/100c/100e		55	30
TCS/T-13	TCS/T-13	TCS/T-13	TCLT-13	TCLT-13	TCLT-13	$3 P$	ABS30c/50c/60c	EBN50c/60c/100c	5.5	30
TCS14	TCS14	TCS14	TCL14	TCS14	TCS14	4P		EBS30c/50c/60c		
TCS/T-14	TCS/T-14	TCS/T-14		TCLT-14	TCLT-14	4 P				
TCS22	-	-	TCL22	-	-	2P				
TCS/T-22	-	-	TCLT-22	-	-	2 P	ABS125c			
TCS23	TCS23		TCL23	TCL23		3P	ABH50c/125c		5.5	40
TCS/T-23	TCS/T-23		TCLT-23	TCLT-23		3 P	ABH50c/125c	EBS125c	5.5	40
TCS24	TCS24		TCL24	TCL24		4P	ABL125c	EBH50c/125c		
TCS/T-24	TCS/T-24			TCLT-24		4 P				
TCS33	TCS33		TCL33	TCL33		2,3P		EBN250c,		
TCS/T-33	TCS/T-33		TCLT-33	TCLT-33		2, 3	ABN250c, ABS250c	EBS250c	5.5	50
TCS34	TCS34		TCL34	TCL34		4P	ABH250c, ABL250c		5.5	50
TCS/T-34	TCS/T-34			TCLT-34				EBH250c		
-	-	-	T1-43A	-	T1/T-43A	2, 3P	ABN/S/H/L400c	EBN/S/H/L400c	-	120
-	-	-	T1-44A	-	-	4P				
-	-	-	T1-63A	-	T1/T-63A	2, 3P	ABN/S/L630c/800c	EBN/S/L630c/800c	-	141
-	-	-	T1-64A	-	-	4P				

Note: Terminal covers for 400AF and 800AF MCCBs are in acrylic.

TCS/T (Short type)

TCL (Long type)

TCL/T (Long type)

Short type construction

Long type construction

Insulation barriers

Insulation barrier allows the insulation characteristics between the phases at the connections to be increased. They are mounted from the front, even with the circuit-breaker already installed, inserting them into the corresponding slots.
They are incompatible with both the insulating terminal covers.
It is possible to mount the phase separating partitions between two circuit-breakers side by side.

Type	Breaker	
	МССВ	ELCB
IB-13	ABN50c/60c/100c/100e ABS30c/50c/60c	EBN50c/60c/100c EBS30c/50c/60c
IB-23	ABS125c ABH50c/125c ABN250c, ABS250c ABH250c ABL125c, ABL250c	EBS125c EBH50c/125c EBN250c, EBS250c EBH250c
B-43B	ABN/S/H/L400c	EBN/S/H/L400c
B-33C	ABN/S/L800c	EBN/S/L800c

Insulation barriers for line side are provided as standard.

Accessories

Round type terminals

Breaker	For 2-pole	For 3-pole	For 4-pole
ABN100c 50AF	RTR1-52	RTR1-53	-
ABN100c 100AF	RTR1-102	RTR1-103	RTR1-104
ABH125c	RTR2-102	RTR2-103	RTR2-104
ABH250c	RTR3-202	RTR3-203	RTR3-204

Flat type terminals

Breaker	For 2-pole	For 3-pole	For 4-pole
ABN100c	RTB1-102	RTB1-103	RTB1-104
ABH125c	RTB2-102	RTB2-103	RTB2-104
$A B H 250 c$	RTB3-202	RTB3-203	RTB3-204

Mechanical interlock

The mechanical interlock is installed on the front of two breakers mounted side by side, in either the 3-pole or 4-pole version and prevents simultaneous closing of the two breakers. So it is suitable for consisting of manual sourcechangeover system.

Type numbering system

Types and applicable breakers

Type	MCCB	ELCB
MI-13, 14	ABS30c, ABS50c, ABS60c, ABN50c, ABN60c, ABN100c, ABN100e	EBS30c, EBS50c, EBS60c, EBN50c, EBN60c, EBN100c
MI-23, 24	ABS125c, ABH50c, ABH125c, ABL125c	EBS125c, EBH50c, EBH125c
MI-33, 34	ABN/S/H/L250c	EBN/S/H250c
MI-43, 44	ABN/S/H/L400c	EBN/S/H/L400c
MI-83, 84	ABN/S/L800c	EBN/S/L800c

Note) MI is not applicable to 2-pole version breakers of 100AF and 125AF.
Layout

MCCB panel cutting
MCCB panel drilling

| Cutting | MI-13, 14 | MI-23, 24 | MI-33, 34 | MI-43, 44 | MI-83, 84 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | A | B | A | B | A | B | A | B | A | B |
| | 52 | 66 | 52 | 66 | 52 | 66 | 100 | 111 | 100 | 111 |
| Wide | 86 | 62 | 102 | 62 | 104 | 62 | 152 | 97 | 152 | 97 |

						in: mm
Breaker	C		D		E	
	3P	4P	3P	4P	3P	4P
100AF	25	25	110.5	110.5	70	95
125AF	30	30	132	132	84	114
250AF	35	35	126	126	99	134
400AF	44	44	215	215	166	210
800AF	70	70	243	243	210	280

Accessories

Plug-in base

Plug-in type MCCB (Plug-in terminal built)

ABH103c plug-in type

Plug-in devices

Plug-in device makes it possible to extract and/or rapidly replace the circuit breaker without having to touch connections for ship and important installations.
The plug-in base is the fixed part of the plug-in version of the circuit-breaker.
It will be installed directly on the back plate of panel.
The circuit-breaker is racked out by unscrewing the top and bottom fixing screws.
Normal type plug-in MCCB

- MCCB current rating upto 250A
- Generally used in switchgears

Double-row type plug-in MCCB

- For 125AF MCCB
- Generally used in branch circuits

Type names of blocks

Breaker	Arrangement	Plug-in block	Remark
	Normal	PB-A3-FR	
	Single-row	PB-A3-1DB	
	Double-row	PB-A3-2DB	
	Line-only	PB-A3-FRL	
ABH125c	Normal	PB-C3-FR	
	Single-row	PB-C3-1DB	
ABH250c	Double-row	PB-C3-2DB	
$400 A F$	Line-only	PB-C3-FRL	
800AF	Normal	PB-D3-FR	
	Normal/Line-only	PB-I3-FR/PB-I3-FRL	
		PB-J3-FR	

Normal

Remote operation

Motor operator

Motor operators can also be operated by manual. The motor drives a mechanism which switches Metasol toggle handle to the "On" and "Off/Reset" positions.

- The manual actuator handle is located on the front of the cover.
- Manual or Automatic operation can be selected.
- Applicable to 2, 3 and 4 -pole breakers.

MCCB			Type	Control voltage	Actuation current (A)	Response time (ms)		Mechanical service life (operations)	No. of operations per hour
2P	3P	4P				Closing	Opening		
-	ABN53c, ABN63c, ABN103c, ABN103e, ABS33c, ABS53c, ABS63c	ABN54c, ABN64c, ABN104c, ABN104e, ABS34c, ABS54c, ABS64c	MOP-M1	(1) DC24V (2) AC110V~DC110V (3) AC230V/DC220V	$\begin{gathered} \leq 3 \mathrm{~A}(\mathrm{DC} 24 \mathrm{~V}) \\ \leq 0.5 \mathrm{~A}(\mathrm{AC}) \end{gathered}$	700	700	10,000	120
-	ABS103c, ABH53c, ABH103c ABL103c	ABS104c, ABH54c, ABH104c ABL104c	MOP-M2	(1) DC24V (2) AC110V~DC110V (3) AC230V/DC220V	$\begin{gathered} \leq 3 \mathrm{~A}(\mathrm{DC} 24 \mathrm{~V}) \\ \leq 0.5 \mathrm{~A}(\mathrm{AC}) \end{gathered}$	840	840	10,000	120
ABN202c, ABS202c, ABH202c ABL202c	ABN203c, ABS203c, ABH203c ABL203c	ABN204c, ABS204c, ABH204c ABL204c	MOP-M3	(1) DC24V (2) AC110V~DC110V (3) $\mathrm{AC} 230 \mathrm{~V} / \mathrm{DC} 220 \mathrm{~V}$	$\begin{gathered} \leq 3 \mathrm{~A}(\mathrm{DC} 24 \mathrm{~V}) \\ \leq 0.5 \mathrm{~A}(\mathrm{AC}) \end{gathered}$	840	840	10,000	120
ABN402c, ABS402c, ABH402c, ABL402c	ABN403c, ABS403c, ABH403c, ABL403c	ABN404c, ABS404c, ABH404c, ABL404c	MOP-M4	(1) DC24V (2) AC110~DC110V (3) AC230V/DC220V	$\begin{gathered} \leq 6 \mathrm{~A}(\mathrm{DC} 24 \mathrm{~V}) \\ \leq 0.8 \mathrm{~A}(\mathrm{AC}) \end{gathered}$	1,200	1,200	4,000	60
ABN802c, ABS802c, ABL802c	ABN803c,, ABS803c,, ABL803c	ABN804c, ABS804c, ABL804c	MOP-M5	(1) DC24V (2) AC110~DC110V (3) AC230V/DC220V	$\begin{gathered} \leq 6 \mathrm{~A}(\mathrm{DC} 24 \mathrm{~V}) \\ \leq 0.8 \mathrm{~A}(\mathrm{AC}) \end{gathered}$	1,200	1,200	2,500	60
-	ABS1003b, ABS1203b ABL1003b, ABL1203b	ABS1004b, ABS1204b ABL1004b, ABL1204b	MOP-M6	(1) AC230V/DC220V	$\begin{aligned} & \leq 6 \mathrm{~A}(\mathrm{DC} 24 \mathrm{~V}) \\ & \leq 0.8 \mathrm{~A}(\mathrm{AC}) \end{aligned}$	1,500	1,500	2,500	20

Wiring connection

Standard connection

1) Remote On and Off of MCCB and manual operation
2) Be careful not to change the polarity at DC24V

Connection with alarm switch (AL)

1) The connection diagram is the method of using a alarm switch (AL) without shunt or undervoltage trip. A trip due to a fault or trip button prevent a remote reset.
2) The fault must be cleared surely and reset it with manual operation.

Accessories

Remote operation

Manual operation

1) Insert the manual handle into the slot of Motor operator surface and rotate it clockwise.
2) It must be rotated just 180° clockwise for safe operation of micro switch in the motor operator.
3) Return the manual handle after the manual operation
4) Turn the slide switch back to the position of Auto.

CAUTION: When the circuit breaker is tripped by trip button in the Off status,
it is impossible to operate motor operator automatically It must be reset by manual operation.

Automatic operation

1) Set the slide switch to Auto, then internal power is closed automatically.
2) Operating frequency should be less than these below regulated values. MOP-M1~M3, M7 (120 operations per hour) , MOP-M4 (60 operations per hour) , MOP-M5, M6 (20 operations per hour)
3) Use the On/Off switch in the range of regulated values.
4) It may interfere near communication equipments because of internal switching power supply. It's recommended that a noise filter be installed to power supply.
5) Please do not input On/Off signals at the same time during the automatic operation.
6) If the circuit breaker has a UVT attached inside, charge a UVT on the rated voltage before performing Motor operator.

Motor operator

Feature

(1) On position indication (Red color)
(2) Trip position indication (White color)
(3) Off position indication (Green color)
(4) Button for push to trip
(5) On/Off/Reset selection lever
(6) Manual/Auto selection lever

MOP-M4/M5/M6

Characteristics curves

Characteristics curves

Breaker types
MCCB
ABS125c
ABH50c/125c
ABL125c
ELCB
EBS125c
EBH50c/125c

Compensation curves
Rated current: 15~100A

Rated current: 15~30A, 40~100A

Rated current: 125A

Breaker types

MCCB

ABN250c, ABS250c
ABH250c, ABL250c

ELCB

EBN250c, EBS250c
EBH250c

Compensation curves

Rated current: 100~225A

Rated current: 250A

Rated current: 100~225A

Rated current: 250A

Characteristics curves

Breaker types

MCCB

ABN400c, ABS400c, ABH400c, ABL400c ABN800c, ABS800c, ABL800c

ELCB

EBN400c, EBS400c, EBH400c, EBL400c
EBN800c, EBS800c, EBL800c

Compensation curves

Rated current: 250~400A

Rated current -

Rated current: 500~800A

Breaker types

МССВ

ABS1000b, ABL1000b
ABS1200b, ABL1200b

ELCB

EBS1003b, EBS1203b

Compensation curves

Breaker types
мсСв
ABS1200bE

Rated current: 1000~1200A

Rated current: 1200A

Characteristics curves (ELCB Adjustable)

Breaker types

ELCB

EBN 50c/60c/100c/250c
EBS 30c/50c/60c/125c/250c
EBH 50c/125c/250c

Breaker types

ELCB

EBN400c, EBS400c,
EBH400c, EBL400c
EBN800c, EBS800c, EBL800c

2A, 2s

Time delay type

Time delay type

Time delay type

Characteristics curves

Motor protection type

Characteristics curves

Motor protection type

Breaker types
MCCB
ABS125cM
ABH50cM/125cM

Compensation curves

Breaker types
MCCB
ABN250cM, ABS250cM
ABH250cM

Compensation curves

Rated current: 16~90A

Rated current \longrightarrow

Rated current: 125~225A

Dimensions

ELCB

Dimensions

9-12

Terminal details

Connecting

Front panel cutting
Panel drilling

9-14

Terminal details

Panel drilling

630AF

800AF

Connecting

Front panel cutting

Standards \& approval

Metasol series circuit breakers and auxiliaries comply with the following international standard:

- IEC 60947-1

Low-voltage switchgear and controlgear - Part 1: General rules

- IEC 60947-2

Low-voltage switchgear and controlgear - Part 2: Circuit-breakers

The following certificates are available on a request.

- CE Declaration of conformity
- Certificate of conformance test (CB) - IEC 60947

CE conformity marking

The CE conformity marking shall indicate conformity to all the obligations imposed on the manufacturer, as regards his products, by virtue of the european community directives providing for the affixing of the CE marking.
When the CE marking is affixed on a product, it represents a declaration of the manufacturer or of his authorized representative that the product in question conforms to all the applicable provisions including the conformity assessment procedures.

Technical information

Standard use environment

Standard use environment for molded case circuit breaker

The operation characteristic of Molded Case Circuit Breaker including short-circuit, overload, endurance and insulation is often influenced largely by external environment and thus should be applied appropriately with conditions of the place where it is used taken into consideration. In particular, the operation characteristic of the circuit breaker with a thermal magnetic trip element (FTU, FMU, ATU) applied changes a bit with the ambient temperature so you have to adjust the value of power rating accordingly when it is actually in use.

1) Ambient temperature: Within the range of $-5^{\circ} \mathrm{C} \sim+40^{\circ} \mathrm{C}$ (However, the average for the duration of 24 hours must not exceed $35^{\circ} \mathrm{C}$.)
2) Relative humidity: Within the range of $45 \sim 85 \%$
3) Altitude: $2,000 \mathrm{~m}$ or less (However, if it exceeds $1,000 \mathrm{~m}$, atmosphere correction through humidity test and withstand voltage test can be considered.)
4) Atmosphere where excessive steam, oil steam, smoke, dust, salt, conductive powder and other corrosive materials do not exist

- If a standard circuit breaker is used in high temperature exceeding $40^{\circ} \mathrm{C}$, you are advised to use it according to the current corrected for each level of ambient temperature in catalog.
- If used in conditions of highly humidity, the dielectric strength or electric performance may be degraded.
- There is no problem in conduction switch, trip or short circuit
isolation in the temperature of $-20^{\circ} \mathrm{C}$.
- Passing or storage in stone-cold area is allowed in the
temperature of $40^{\circ} \mathrm{C}$.
- The operating characteristic of the breaker with a thermal
magnetic trip element changes as the base ambient
temperature is adjusted to $40^{\circ} \mathrm{C}$.

- It is highly recommended to use a dust cover or anti-humid agent if it is used in dusty and humid conditions.
- Excessive vibration may cause a trip break such as connection fault or flaw on mechanical parts.

- If it is left On or Off for a long time, it is recommended to switch load current on a regular basis.
- It is recommend to put it in the sealed protection if corrosive gas is prevalent.

Special use environment

Environment where ambient temperature exceeds $40^{\circ} \mathrm{C}$

The temperate of each module of a Molded Case Circuit Breaker is the sum of temperature increase by conduction and ambient temperature and if the ambient temperature exceeds $40^{\circ} \mathrm{C}$ the passing current needs to be reduced so that the temperature of such element as internal insulator of MCCB exceed the maximum allowable temperature.
The base ambient temperature of Metasol breaker is set as $40^{\circ} \mathrm{C}$ so if it has to be used in conditions with higher temperature than this, the rated current is required to be reduced a little as described in the table below.

Table of rated current for Metasol MCCB corrected according to ambient temperature

Ampere frame	Rated current	Model name of breaker	Rated current	Table of rated current corrected according to ambient temperature (A)						
				$10^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$
30	3	ABS30c	3	3	3	3	3	3	3	3
	5		5	5	5	5	5	5	5	4
	10		10	10	10	10	10	10	9	9
	15		15	15	15	15	15	15	14	13
	20		20	20	20	20	20	19	19	18
	30		30	30	30	30	30	29	28	27
50	40	ABN50c, ABS50c	40	40	40	40	40	39	38	36
	50		50	50	50	50	50	49	47	45
60	60	ABN60c, ABS60c	60	60	60	60	60	58	56	55
100	75	ABN100c, ABN100e	75	75	75	75	75	73	71	68
	100		100	100	100	100	100	97	94	91
125	125	ABH50c, ABS125c, ABH125c, ABL125c	125	125	125	125	125	121	116	107
250	150	ABN250c, ABS250c, ABH250c, ABL250c	150	150	150	150	150	145	140	128
	175		175	175	175	175	175	169	163	150
	200		200	200	200	200	200	193	186	171
	225		225	225	225	225	225	217	209	193
	250		250	250	250	250	250	241	233	214
400	250	ABN400c, ABS400c ABH400c, ABL400c	250	250	250	250	250	246	242	238
	300		300	300	300	300	300	295	291	287
	350		350	350	350	350	350	345	339	332
	400		400	400	400	400	400	394	388	381
800	700	ABN800c, ABS800c ABL800c	700	700	700	700	700	689	679	668
	800		800	800	800	800	800	788	776	764

Technical document

Special use environment

Table of rated current for Metasol ELCB corrected according to ambient temperature

Ampere frame	Rated current	Model name of breaker	Rated current	Table of rated current corrected according to ambient temperature (A)						
				$10^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$
30	15	EBS30c	15	15	15	15	15	15	15	15
	20		20	20	20	20	20	19	19	18
	30		30	30	30	30	30	29	28	27
50	40	EBN50c, EBS50c	40	40	40	40	40	39	38	36
	50		50	50	50	50	50	49	47	45
60	60	EBN60c, EBS60c	60	60	60	60	60	58	56	55
100	75	EBN100c	75	75	75	75	75	73	71	68
	100		100	100	100	100	100	97	94	91
125	125	EBH50c, EBS125c, EBH125c	125	125	125	125	125	121	116	107
250	150	EBN250c, EBS250c, EBH250c	150	150	150	150	150	145	140	128
	175		175	175	175	175	175	169	163	150
	200		200	200	200	200	200	193	186	171
	225		225	225	225	225	225	217	209	193
	250		250	250	250	250	250	241	233	214
400	250	EBN400c, EBS400c, EBH400c, EBL400c	250	250	250	250	246	242	238	238
	300		300	300	300	300	295	291	287	287
	350		350	350	350	350	345	339	332	332
	400		400	400	400	400	394	388	381	381
800	700	EBN800c, EBS800c EBL800c	700	700	700	700	689	679	668	668
	800		800	800	800	800	788	776	764	764

Environment where ambient temperature is $-5^{\circ} \mathrm{C}$ or less

Molded Case Circuit Breaker is subject to the effect of low temperature brittle of metal part inside and insulator, or changes in viscosity of lubricating oil in device, extra care should be taken not to have the temperature drop extremely with the use of such device as space heater. In addition, in case of using a thermal magnetic trip element (FTU, FMU, ATU) , the operating characteristic changes toward the difficult direction, so you should identify the relationship of protection and correct accordingly.
Although MCCB is not affected by conduction switch, trip, or short circuit isolation in the temperature of - $20^{\circ} \mathrm{C}$, it is highly recommended to use a temperature maintaining device such as space heater. In addition, transportation and passing in stone-cold area in the temperature as low as $-40^{\circ} \mathrm{C}$ is allowed but it is recommend to leave the status of MCCB off or tripped in order to minimize the effect of brittle due to a low temperature.

High humidity condition (Relative humidity 85% or more)

Using Molded Case Circuit Breaker in a place of high humidity requires a rigorous maintenance including installation of anti-humidity agent within the structure in order to prevent the insulation sag of insulator or corrosion of mechanical parts as a result of high humidity. Also, in case of installing MCCB within the enclosed equipment, a space heater needs to be installed as well to prevent dew condensation that might occur due to a drastic temperature change.

Environment where petrochemical gas exists

The contact material of Molded Case Circuit Breaker is silver or silver alloy which develops creation of petrochemical coat that might cause a poor connection if it gets in contact with petrochemical gas.
However, it is easy for petrochemical coat to be mechanically taken off so it is no problem if make-and break operation occurs frequently but it needs to be switched back and forth between make and break if the operation rarely occurs.
The lead wire of moving contact of Molded Case Circuit Breaker can be disconnected as it is corroded or hardened by petrochemical gas. The silver coating is effective to prevent this from occurring and there is a need to increase durability of MCCB with the use of silver coated lead wire if it is used in environment with thick petrochemical gas.

Environment where potentially explosive gas exists

It is advised, in principle, not to install a Molded Case Circuit Breaker that switches and inhibits current in a dangerous place such as this one.

Impact of altitude

If an MCCB is used in an elevated area higher than 2000 m sea level, its operating performance is subject to dramatic drop in atmospheric pressure and temperature. For example, the air pressure is reduced to 80% of ordinary pressure at $2,200 \mathrm{~m}$ and further 50% at $5,500 \mathrm{~m}$ although the short-circuit performance is not affected. If it is used in areas of high sea level, you can do correction based on the correction parameter table in high altitude environment, as described below

* Refer to the correction parameter table in high altitude environment (ANSI C37. 29-1970)

1) How to correct voltage:

- If the rated voltage is AC 600 V at $4,000 \mathrm{~m}$ above sea level,

600 V (rated voltage) $\times 0.82$ (correction parameter) $=492 \mathrm{~V}$.
2) How to correct current:

- If the rated voltage is AC 800 A at above $4,000 \mathrm{~m}$ sea level, 800 A (rated current) $\times 0.96$ (correction parameter) $=768 \mathrm{~A}$.
[Correction parameter table for altitude]

Altitude	Voltage correction parameter	Current correction parameter
$\mathbf{2 , 0 0 0 m}$	1.00	1.00
$\mathbf{3 , 0 0 0 m}$	0.91	0.98
$\mathbf{4 , 0 0 0 m}$	0.82	0.96
$\mathbf{5 , 0 0 0 m}$	0.73	0.94
$\mathbf{6 , 0 0 0 m}$	0.65	0.92

Technical document

Environment with vibration and impulse exercised

Impact of vibration and impulse

An excessive vibration and impulse may cause damage on breaker or other security problems including dynamic strength. An appropriate consideration is required to select a right MCCB for an adverse environmental stress such as this one. Moreover, this stress may incur from vibration during transportation, magnetic impulse while manipulating a switch or may be affected by equipment in surrounding area.
There is a standard call [Vibration testing method for small electric appliances] for vibration and impulse test for electric equipment and the seismic and endurance tests of Molded Case Circuit Breaker are conducted in accordance with this standard, considering the circumstance mentioned above.

Vibration

The magnitude of vibration is measured by double amplitude and frequency with the following equation with accelerator.
$\alpha \mathrm{g}=0.002 \times$ frequency $(\mathrm{Hz}) \times$ double amplitude (mm)

* $\alpha \mathrm{g}$: Multiple of gravitational acceleration ($\mathrm{g}=9.8 \mathrm{~m} / \mathrm{sec} 2$)

There are three types of vibration tests including resonance test, vibration endurance test, and malfunction test as described below.

1) Resonant test

Alter the frequency of sinusoidal wave within the range of $0 \sim 55 \mathrm{~Hz}$ gradually with $0.5 \sim 1 \mathrm{~mm}$ of double amplitude applied to see if there is any occurrence of vibration on a specific part of MCCB.
2) Vibration endurance test

A sinusoidal wave with double amplitude of $0.5 \sim 1 \mathrm{~mm}$ and frequency of 55 Hz (Resonant frequency obtained in previous clause if there is a resonant point) is manually created to check the operational status.
3) Malfunction test

Apply vibration for 10 minutes for each condition of altering double amplitude and frequency to check if there is any malfunction in MCCB.

Impulse

The magnitude of impulse is denoted by the multiple of gravitational acceleration imposed on the equipment and part. The test is conducted through a drop impulse test.

Impact of high frequency

In case of high frequency current, you are required to reduce the rated current of the breaker with a thermal magnetic trip element embedded due to heat incurred by the skin effect of conductor and/or core less of structure. The reduction rate varies according to the frame Size and rated current and decreases down to $70 \sim 80 \%$ at 400 Hz . In addition, the core loss decreases attractive force, which leads to increase of instantaneous trip current.

* Core loss: It refers to the electrical loss in a transformer caused by magnetization of the core that changes over time and is categorized into hysteresis loss and eddy current loss.
* Hysteresis loss: It takes up the majority portion of no-load loss of electric equipment and is calculated like this. $\mathrm{Ph}=\sigma f B \mathrm{mn}$
Bm: Maximum value of magnetic flux density, n: constant (1.6~2.0) , f: Frequency, σ : Hysteresis constant
* Eddy current: It refers to an induced electric current formed within the body of a conductor when it moves through a non-uniform or changing magnetic field. The eddy current that incurs at winding of transformer or core is considered as one of the transformer losses as a part of exciting current. It is also called 'eddy current loss'.

Use environment with vibration and impulse applied
[Table of seismic performance and internal impulse performance]

		Test	Internal impulse
Test condition	Mounting vibration, direction of impulse	- Vertical mounting - Top-down, Left-right, Front-back	Picture 1, 2, 3, 4 $(\rightarrow$ Represents the direction of drop) Picture 3 Picture 4
	Status of MCCB	(1) Non-conduction (On or Off status) (2) Status where rated current is conducted until the temperature of MCCB becomes constant and keeps being conducted	Non-conduction (On or Off status)
Test result	Judgment condition	If it is On , it should not be Off If it is Off, it should not be On No abnormal status such as damage, transformation, or annealing of nut part Characteristics of switch and trip after the test must be normal	

МССВ

ELCB

Note: • (Completion)

We open up a brighter future through
efficient and convenient energy solutions.

- For your safety, please read user's manual thoroughly before operating
- Contact the nearest authorized service facility for examination, repair, or adjustment.
- Please contact qualified service technician when you need maintenance. Do not disassemble or repair by yourself!
- Any maintenance and inspection shall be performed by the personnel having expertise concerned

- According to The WEEE Directive, please do not discard the device with your household waste.

- Headquarter

127 LS-ro (Hogye-dong) Dongan-gu, Anyang-si, Gyeonggi-Do, 14119, Korea

- Seoul Office

LS Yongsan Tower, 92, Hangang-daero, Yongsan-gu, Seoul, 04386, Korea Tel. 82-2-2034-4916, 4684, 4429

■ Overseas Subsidiaries

- LS ELECTRIC Japan Co., Ltd. (Tokyo, Japan) Tel: 81-3-6268-8241 E-Mail: japan@ls-electric.com
- LS ELECTRIC (Dalian) Co., Ltd. (Dalian, China) Tel: 86-411-8730-5872 E-Mail: china.dalian@lselectric.com.cn
- LS ELECTRIC (Wuxi) Co., Ltd. (Wuxi, China) Tel: 86-510-6851-6666 E-Mail: china.wuxi@lselectric.com.cn
- LS ELECTRIC Vietnam Co., Ltd. (Hanoi, Vietnam) Tel: 84-93-631-4099 E-Mail: vietnam@ls-electric.com
- LS ELECTRIC Middle East FZE (Dubai, U.A.E.) Tel: 971-4-886-5360 E-Mail: middleeast@ls-electric.com
- LS ELECTRIC Europe B.V. (Hoofddorf, Netherlands) Tel: 31-20-654-1424 E-Mail: europartner@ls-electric.com
- LS ELECTRIC America Inc. (Chicago, USA)

Tel: 1-800-891-2941 E-Mail: sales.us@lselectricamerica.com

- LS ENERGY SOLUTIONS LLC (Charlotte, USA)

Tel: 1-704-587-4051 E-Mail: cmfeldman@ls-es.com

- LS ELECTRIC Turkey Co., Ltd. (Istanbul, Turkey) Tel: 90-212-806-1252 E-Mail: turkey@ls-electric.com

Technical Question or After-sales Service
Customer Center-Quick Responsive Service, Excellent technical support

www.Is-electric.com

- Overseas Branches

- LS ELECTRIC Tokyo Office (Japan) Tel: 81-3-6268-8241 E-Mail: tokyo@ls-electric.com
- LS ELECTRIC Beijing Office (China)

Tel: 86-10-5095-1631 E-Mail: china@lselectric.com.cn

- LS ELECTRIC Shanghai Office (China)

Tel: 86-21-5237-9977 E-Mail: china@lselectric.com.cn

- LS ELECTRIC Guangzhou Office (China)

Tel: 86-20-3818-2883 E-Mail: china@lselectric.com.cn

- LS ELECTRIC Chengdu Office (China)

Tel: 86-28-8670-3201 E-Mail: china@lselectric.com.cn

- LS ELECTRIC Qingdao Office (China) Tel: 86-532-8501-2065 E-Mail: china@lselectric.com.cn
- LS ELECTRIC Nanjing Office (China) Tel: 86-25-8467-0005 E-Mail: china@lselectric.com.cn
- LS ELECTRIC Bangkok Office (Thailand) Tel: 66-90-950-9683 E-Mail: thailand@Is-electric.com
- LS ELECTRIC Jakarta Office (Indonesia) Tel: 62-21-2933-7614 E-Mail: indonesia@ls-electric.com
- LS ELECTRIC Moscow Office (Russia) Tel: 7-499-682-6130 E-Mail: info@lselectric-ru.com
- LS ELECTRIC America Western Office (Irvine, USA) Tel: 1-949-333-3140 E-Mail: america@ls-electric.com
- LS ELECTRIC India Office (India) Tel: 91-80-6142-9108 E-Mail: Info_india@ls-electric.com
- LS ELECTRIC Singapore Office (Singapore) Tel: 65-6958-8162 E-Mail: singapore@|s-electric.com

[^0]: Note) EBS203c/250/30: EBS203c, Rated current 250A, Time delay type 1A1s

[^1]: Note) EBS403c/400/30: EBS403c, Rated current 400A, Time delay type 2A2s

