Dual Display PID Temperature Controllers

TCN Series

For your safety, read and follow the considerations written in the instruction manual, other manuals and Autonics website.
The specifications, dimensions, etc are subject to change without notice for product improvement Some models may be discontinued without notice.

Features

- Dual digital display (PV/SV)
- 100 ms high-speed sampling rate and $\pm 0.5 \%$ display accuracy
- Switch between relay output and SSR drive output (patent) *
- SSR drive output (SSRP function) control options: ON/OFF control, cycle control, phase control
- Compact design with large display panels for easier reading
- Connector plug types offer easier wiring and maintenance (TCN4S- \square-P)
*Korea Patent Registration 10-1002582, U.S.A. Patent Registration 8645000, Japan Patent Registration 3184816, China Patent Registration ZL200980111733.X, Vietnam Patent Registration 1-0012131, India Patent Registration 291573, Indonesia Patent Registration IDP0032166

Safety Considerations

- Observe all 'Safety Considerations' for safe and proper operation to avoid hazards.
- \triangle symbol indicates caution due to special circumstances in which hazards may occur.

\triangle Warning Failure to follow instructions may result in serious injury or death

1. Fail-safe device must be installed when using the unit with machinery that may cause serious injury or substantial economic loss.(e.g. nuclear power control, medical equipment, ships, vehicles, railways, aircraft, combustion apparatus, safety equipment, crime/disaster prevention devices, etc.)
Failure to follow this instruction may result in personal injury, economic loss or fire.
2. Do not use the unit in the place where flammable/explosive/corrosive gas, high humidity, direct sunlight, radiant heat, vibration, impact or salinity may be present.
Failure to follow this instruction may result in explosion or fire.
3. Install on a device panel to use.

Failure to follow this instruction may result in fire or electric shock.
04. Do not connect, repair, or inspect the unit while connected to a power source.
Failure to follow this instruction may result in fire or electric shock.
05. Check 'Connections' before wiring.

Failure to follow this instruction may result in fire.
06. Do not disassemble or modify the unit.

Failure to follow this instruction may result in fire or electric shock.
. Caution Failure to follow instructions may result in injury or product damage

1. When connecting the power input and relay output, use AWG $20\left(0.50 \mathrm{~mm}^{2}\right)$ cable or over, and tighten the terminal screw with a tightening torque of 0.74 to 0.90 N m .
When connecting the sensor input and communication cable without dedicated cable, use AWG 28 to 16 cable and tighten the terminal screw with a tightening torque of 0.74 to 0.90 N m .
Failure to follow this instruction may result in fire or malfunction due to contact failure.
2. Use the unit within the rated specifications.

Failure to follow this instruction may result in fire or product damage
03. Use a dry cloth to clean the unit, and do not use water or organic solvent. Failure to follow this instruction may result in fire or electric shock.
04. Keep the product away from metal chip, dust, and wire residue which flow into the unit.
Failure to follow this instruction may result in fire or product damage.

Cautions during Use

- Follow instructions in 'Cautions during Use'. Otherwise, it may cause unexpected accidents.
- Check the polarity of the terminals before wiring the temperature sensor.
- For RTD temperature sensor, wire it as 3-wire type, using cables in same thickness and length. For thermocouple (TC) temperature sensor, use the designated compensation wire for extending wire.
- Keep away from high voltage lines or power lines to prevent inductive noise. In case installing power line and input signal line closely, use line filter or varistor at power line and shielded wire at input signal line. Do not use near the equipment which generates strong magnetic force or high frequency noise.
- Install a power switch or circuit breaker in the easily accessible place for supplying or disconnecting the power.
- Do not use the unit for other purpose (e.g. voltmeter, ammeter), but temperature controller.
- When changing the input sensor, turn off the power first before changing. After
changing the input sensor, modify the value of the corresponding parameter.
- $24 \mathrm{VAC} \sim, 24-48 \mathrm{VDC}==$ power supply should be insulated and limited voltage/current or Class 2, SELV power supply device.
- Make a required space around the unit for radiation of heat. For accurate temperature measurement, warm up the unit over 20 min after turning on the power.
- Make sure that power supply voltage reaches to the rated voltage within 2 sec after supplying power.
- Do not wire to terminals which are not used
- This unit may be used in the following environments.
- Indoors (in the environment condition rated in 'Specifications')
- Altitude Max. 2,000 m
- Pollution degree 2
- Installation category II

Ordering Information

This is only for reference, the actual product does not support all combinations. For selecting the specified model, follow the Autonics website

Product Components

- Product
- Instruction manual
- Bracket

Sold Separately

- Terminal protection cover: RSA / RMA / RHA / RLA Cover

Specifications

Series		TCN4 \square-22 \square - \square	TCN4 \square-24 \square - \square
Power supply		$\begin{aligned} & 24 \mathrm{VAC} \sim 50 / 60 \mathrm{~Hz} \pm 10 \% \\ & 24-48 \mathrm{VDC}== \pm 10 \% \end{aligned}$	100-240 VAC~50/60 Hz $\pm 10 \%$
Power consumption		$\mathrm{AC}: \leq 5 \mathrm{VA}, \mathrm{DC}: \leq 3 \mathrm{~W}$	$\leq 5 \mathrm{VA}$
Sampling period		100 ms	
Input specification		Refer to 'Input Type and Using Range.	
Control output	Relay	250 VAC $\sim 3 \mathrm{~A}, 30 \mathrm{VDC}=-=3 \mathrm{~A}$, 1a	
	SSR	$12 \mathrm{VDC}= - \pm 2 \mathrm{~V}, \leq 20 \mathrm{~mA}$	
Alarm output		250 VAC ~ 1 A la	
Display type		7 Segment (red, green), LED type	
Control type	Heating, Cooling	ON/OFF, P, PI, PD, PID Control	
Hysteresis		1 to $100(0.1 \text { to } 50.0)^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$	
Proportional band (P)		0.1 to $999.9{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$	
Integral time (I)		0 to 9,999 sec	
Derivative time (D)		0 to 9,999 sec	
Control cycle (T)		0.5 to 120.0 sec	
Manual reset		0.0 to 100.0\%	
Relay life cycle	Mechanical	$\geq 5,000,000$ operations	
	Electrical	OUT1/2: $\geq 200,000$ operations (load resistance: 250 VAC ~ 3 A) AL1/2: $\geq 300,000$ operations (load resistance: 250 VAC~ 1 A)	
Dielectric strength		Between input terminal and power terminal: 1,000 VAC~ 50/60 Hz for 1 min	Between input terminal and power terminal: 2,000 VAC~50/60 Hz for 1 min
Vibration		0.75 mm amplitude at frequency of 5 to 55 Hz (for 1 min) in each $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction for 2 hours	
Insulation resistance		$\geq 100 \mathrm{M} \Omega$ ($500 \mathrm{VDC}=-=$ megger)	
Noise immunity		$\pm 2 \mathrm{kV}$ square shaped noise (pulse width: $1 \mu \mathrm{~s}$) by noise simulator R-phase, S-phase	
Memory retention		≈ 10 years (non-volatile semiconductor memory type)	
Ambient temperature		-10 to $50^{\circ} \mathrm{C}$, storage: -20 to $60^{\circ} \mathrm{C}$ (no freezing or condensation)	
Ambient humidity		35 to 85\%RH, storage: 35 to 85\%RH (no freezing or condensation)	
Insulation type		Mark: 回, double or reinforced insulation (dielectric strength between the measuring input part and the power part: 1 kV)	Mark: 回, double or reinforced insulation (dielectric strength between the measuring input part and the power part: 2 kV)
Approval		C $\epsilon_{c} \mathrm{TN}_{\mathrm{us}} \mathrm{EH}$ [©	
Unit weight (packaged)		-TCN4S: $\approx 100 \mathrm{~g}(\approx 147 \mathrm{~g})$ -TCN4H: $\approx 124 \mathrm{~g}(\approx 194 \mathrm{~g})$	-TCN4M: $\approx 133 \mathrm{~g}(\approx 203 \mathrm{~g})$ -TCN4L: $\approx 179 \mathrm{~g}(\approx 275 \mathrm{~g})$

Input Type and Using Range

Input type		Decimal point	Display$\angle[R . H$	Using range (${ }^{(} \mathrm{C}$)			Using range (${ }^{\circ} \mathrm{F}$)	
Thermo -couple	K (CA)			-50	to	1,200	-58	to 2,192
		0.1	ech.L	-50.0	to	999.9	-58.0	to 999.9
	${ }^{\prime}$ (IC)	1	U $\mathrm{C} . \mathrm{H}$	-30	to	800	-22	to 1,472
		0.1	U [.L	-30.0	to	800.0	-22.0	to 999.9
	L (IC)	1	L. C.H	-40	to	800	-40	to 1,472
		0.1	L L. L	-40.0	to	800.0	-40.0	to 999.9
	T (CC)	1	t[C.H	-50	to	400	-58	to 752
		0.1	t[C.L	-50.0	to	400.0	-58.0	to 752.0
	R (PR)	1	$r^{\text {Pr }}$	0	to	1,700	32	to 3,092
	S(PR)	1	5 Pr	0	to	1,700	32	to 3,092
RTD	$\mathrm{Cu} 50 \Omega$	1	[45.4	-50	to	200	-58	to 392
		0.1	¢ 45.1	-50.0	to	200.0	-58.0	to 392.0
	DPt100 Ω	1	dPt.H	-100	to	400	-148	to 752
		0.1	dPt.L	-100.0	to	400.0	-148.0	to 752.0

Display accuracy

Input type	Using temperature	Display accuracy
Thermocouple RTD	At room temperature $\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$	(PV $\pm 0.5 \%$ or $\pm 1^{\circ} \mathrm{C}$ higher one) ± 1-digit -Thermocouple R, S below $200^{\circ} \mathrm{C}$: (PV $\pm 0.5 \%$ or $\pm 3^{\circ} \mathrm{C}$ higher one) ± 1-digit Over $200^{\circ} \mathrm{C}$: (PV $\pm 0.5 \%$ or $\pm 2^{\circ} \mathrm{C}$ higher one) ± 1 digit - Thermocouple L, RTD Cu50 Ω : (PV $\pm 0.5 \%$ or $\pm 2^{\circ} \mathrm{C}$ higher one) ± 1-digit
	Out of room temperature range	(PV $\pm 0.5 \%$ or $\pm 2^{\circ} \mathrm{C}$ higher one) ± 1-digit -Thermocouple R, S below $200^{\circ} \mathrm{C}$: (PV $\pm 1.0 \%$ or $\pm 6^{\circ} \mathrm{C}$ higher one) \pm 1digit Over $200^{\circ} \mathrm{C}$: (PV $\pm 0.5 \%$ or $\pm 5^{\circ} \mathrm{C}$ higher one) ± 1 digit - Thermocouple L, RTD Cu50 Ω : (PV $\pm 0.5 \%$ or $\pm 3^{\circ} \mathrm{C}$ higher one) \pm 1digit

- For TCN4S- \square-P, add $\pm 1^{\circ} \mathrm{C}$ by accuracy standard.

Unit Descriptions

1. PV Display part (red)

-RUN mode: Displays PV (Present value)

- Setting mode: Displays parameter name

2. SV Display part (green)

- RUN mode: Displays SV (Setting value)
- Setting mode: Displays parameter setting value

3. Indicator		
Display	Name	Description
AL1/2	Alarm output	Turns ON when the alarm output is ON.
OUT	Control output	Turns ON when control output is ON ouYCLE/PHASE control of CSR drive output: Turns ON when MV is over 3.0\% [AC power model]
AT	Auto tuning	Flashes during auto tuning every 1 sec
${ }^{\circ} \mathrm{C}, \%,{ }^{\circ} \mathrm{F}$	Unit	Displays selected unit (parameter).

4. Input key
Display
$[$ Name
$[\mathbf{M O D E}]$

Errors

Display	Description	Troubleshooting		
OPEn	Flashes when input sensor is disconnected or	Check input sensor status.		
sensor is not connected.	HHHH	Flashes when PV is higher than input range.		When input is within the rated input
:---				
Range, this display disappears.				

Dimensions

- Unit: mm, For the detailed drawings, follow the Autonics website.
- Below is based on TCN4S Series .

						Panel cut-out$\stackrel{F}{\leftrightarrows}$			
									$\xrightarrow{\rightarrow}$
Body						Panel cut-out			
	A	B	C	D	E	F	G	H	1
TCN4S	48	48	6	64.5	44.8	≥ 65	≥ 65	$45_{0}^{0.5}$	$45^{+0.5}$
TCN4S-■-P	48	48	7.7	65.8	44.8	≥ 65	≥ 65	$45_{0}^{0.5}$	$45^{+0.5}$
TCN4M	72	72	6	64.5	67.5	≥ 90	≥ 90	$68^{+0,7}$	$68{ }_{0}^{+0,7}$
TCN4H	48	96	6	64.5	91.5	≥ 65	≥ 115	$45^{+0.6}$	$92_{0}^{10.8}$
TCN4L	96	96	6	64.5	91.5	≥ 115	≥ 115	$92{ }_{0}^{10.8}$	$92_{0}^{10.8}$

Bracket

TCN4S

Other series

Installation Method

TCN4S

- Other series

Insert the unit into a panel, fasten the bracket by pushing with a flathead screwdriver.

Crimp Terminal Specifications

- Unit: mm, Use the crimp terminal of follow shape.

Wire ferrule

Terminal number	a	b	c
$\mathbf{1}$ to $\mathbf{8}$	6	≤ 1.7	≤ 3.7
$\mathbf{9}$ to $\mathbf{1 1}$	6 to 8	≤ 2.1	≤ 4.2
$\mathbf{1 2}$ to $\mathbf{1 4}$	6 to 8	≤ 1.5	≤ 3.5

Fork crimp terminal

Round crimp terminal

Connections

- TCN4S

\square TCN4S- \square-P

■ TCN4M

TCN4H/L

Mode Setting

RUN	[MODE], [$\mathbf{4}],[\mathbf{Q}],[\mathbf{V}] \rightarrow$	SV setting	Move digits: [Change value: [$\mathbf{\Delta}],[\mathbf{\nabla}] \quad \rightarrow$ Save: [MODE]	
	[MODE] $2 \mathrm{sec} \rightarrow$	Parameter 1 group	[MODE] over $3 \mathrm{sec} \rightarrow$	
	[MODE] $4 \mathrm{sec} \rightarrow$	Parameter 2 group	[MODE] over $3 \mathrm{sec} \rightarrow$	RUN
	$\underset{\text { sec }}{[\mathbf{4}]+[\mathbf{\Lambda}]+[\mathbf{V}] \text { over } 5} \rightarrow$	Parameter reset	Auto \rightarrow	
	$[\mathbf{\Delta}]+[\mathbf{\nabla}]$ over 3 sec \rightarrow	Digital input key	Auto \rightarrow	

Parameter Setting

- Some parameters are activated/deactivated depending on the model or setting of other parameters. Refer to the description of each item.
- The setting range in parentheses is for using the decimal point display in the input specification.
- If there is no key input for more than 30 seconds in each parameter, it returns to RUN mode.
-When pressing the [MODE] key within 1 second after returning to the operation mode from the parameter group, it will enter the parameter group before returning. - [MODE] key: Saves the current parameter setting value and moves to the next parameter.
[【] key: Checks the fixed item / Moves the row when changing the set value
[$\mathbf{A}],[\mathbf{\nabla}]$ keys: Selects the parameter / Changes the set value
- Recommended parameter setting sequence: Parameter 2 group \rightarrow Parameter 1 group
\rightarrow SV setting mode
- Parameter 1 group

Parameter		Display	Default	Setting range	Condition
1-1	AL1 alarm temperature	R L 1	1250	Deviation alarm: -F.S. to F.S.	$\begin{aligned} & \text { 2-12/14 } \\ & \text { alarm } \end{aligned}$
1-2	AL2 alarm temperature	RL2	1250	Absolute value alarm: Within input range	operation: AM1 to AM6
	Auto tuning	Rt	-FF	OFF: Stop, ON: Execution	
1-4	Proportional band	P	010.0	0.1 to $999.9{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$	2-8 Control
	Integral time	1	0000	0 (OFF) to 9999 sec	typ
1-6	Derivative time	d	0000	0 (OFF) to 9999 sec	
	Manual reset	reSt	050.0	0.0 to 100.0\%	2-8 Control type: PID \& 1-5 Integral time: 0
	Hysteresis	H45	002	1 to $100(0.1 \text { to } 50.0)^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$	2-8 Control type: ONOF

- Parameter 2 group

Parameter		Display	Default	Setting range	Condition	
2-1	Input specification ${ }^{01)}$	In-t	\longleftarrow [月.H	Refer to 'Input Type and Using Range'.	-	
2-2	Temperature unit ${ }^{\text {11) }}$	Unit	- [${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}$	-	
2-3	Input correction	$1 \mathrm{n}-\mathrm{b}$	0000	-999 to 999 (-199.9 to 999.9) ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$	-	
2-4	Input digital filter	-̇Ru.F	000.1	0.1 to 120.0 sec	-	
2-5	SV low limit ${ }^{(2)}$	L-5u	-50	Within 2-1 Input specification Input	-	
	SV high limit ${ }^{\text {22) }}$	H-5u	1200	$\begin{aligned} & \text { L-SV } \leq \mathrm{H} \text {-SV - } 1 \text {-digit }{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F} \\ & \mathrm{H}-\mathrm{SV} \geq \mathrm{L} \text {-SV }+1 \text {-digit }{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F} \end{aligned}$		
2-7	Control output mode ${ }^{031}$	O-Ft	HEAt	HEAT: Heating, COOL: Cooling	-	
	Control type ${ }^{(4)}$	[-nd	Pid	PID, ONOF: ON/OFF		
2-9	Control output	-ut	rly	RLY: relay, SSR		
2-10	SSR drive output type	55 r.n̄	5tnd	[AC model] STND: standard, CYCL: cycle, PHAS: phase	2-9 Control output: SSR	
2-11 Control cycle		t	20.0	0.5 to 120.0 sec	2-9 Control output: RLY 2-10 SSR drive output type: STND	
		2.0	2-9 Control output: SSR 2-10 SSR drive output type: STND			
	AL1 alarm operation		AL- 1		AM0: Off AM1: Deviation high limit alarm AM2: Deviation low limit alarm AM3: Deviation high, low limit alarm AM4: Deviation high, low reverse alarm AM5: Absolute value high limit alarm AM6: Absolute value low limit alarm SBA: Sensor break alarm LBA: Loop break alarm (LBA)	
	AL1 alarm option	A: Standard B: Alarm latch alarm D: Alarm latch and C: Standby standby sequence 1 sequence 1 F: Alarm latch and E: Standby standby sequence 2 sequence 2 stan - Enter to option setting: Press [[4] key in 2-12 AL-1 alarm operation.				
	AL2 alarm operation	AL-2	Añ. A	Same as 2-12/13 AL1 alarm operation/ option		
	AL2 alarm option					
2-16	Alarm output hysteresis	RHY5	001	1 to $100(0.1 \text { to } 50.0)^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$	$\begin{aligned} & \text { 2-12/14 } \\ & \text { AL1/2 alarm } \\ & \text { operation: } \\ & \text { AM1 to } 6 \end{aligned}$	
2-17	LBA time	LbA.t	0000	0 (OFF) to 9999 sec or auto (auto tunning)	2-12/14 AL1/2 alarm operation: LBA	
2-18	LBA band	L6\%.b	0002	0 (OFF) to $999(0.0 \text { to } 999.9)^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ or auto (auto tunning)	2-12/14 AL1/2 alarm operation: LBA \& 2-18 LBA time: > 0	
2-19	Digital input key	di-u	5top	STOP: Stop control output, AL.RE: Alarm reset, AT*: Auto tuning execution, OFF	*2-8Control type: PID	
2-20	Sensor error MV	Er.ñu	000.0	0.0: OFF, 100.0: ON	2-8 Control type: ONOF	
				0.0 to 100.0\%	2-8 Control type: PID	
2-21	Lock	LoL	oFF	OFF LOC1: Parameter 2 group lock LOC2: Parameter $1 / 2$ group lock LOC3: Parameter 1/2 group, SV setting lock	-	

1) Below parameters are initialized when the setting value is changed.

Parameter 1 group: AL1/2 alarm temperature
Parameter 2 group: Input correction, SV high/low limit, Alarm output hysteresis, LBA time, LBA band SV setting mode: SV
02) If SV is lower than low limit or higher than high limit when the value is changed, SV is changed to the low/high mit value.
$\mathrm{f} 2-1$ Input specification is changed, the value is changed to Min./Max. value of Input specification.
$03)$ When the setting value is changed, setting value of $2-20$ Sensor error MV is initialized to 0.0 (OFF).
04) When changing the value from PID to ONOF, each value of following parameter is changed.

Function: Alarm

■ II. - I Set both alarm operation and alarm option by combining, Alarm Alarm Each alarm operates individually in two alarm output models operation option When the current temperature is out of alarm range, alarm clears automatically.

Operation

- H: Alarm output hysteresis

Name	Alarm operation		Description
-	- Ala		No alarm output
Deviation high limit	OFF ${ }^{\text {H4 }}$	OFF ${ }^{\text {H7 }}$ ON	If deviation between PV and SV as high-limit is higher than set value of deviation temperature, the alarm output will be ON.
	$\begin{array}{cc} \Delta \mathrm{SV} & \Delta \\ 100^{\circ} \mathrm{C} & 110^{\circ} \mathrm{C} \\ \hline \end{array}$		
	High deviation: Set as $10^{\circ} \mathrm{C}$	High deviation: Set as $-10^{\circ} \mathrm{C}$	
Deviation low limit	ON ${ }^{\text {H/ }}$	ON 4 H, OFF	If deviation between PV and SV as low limit is higher than set value of deviation temperature, the alarm output will be ON.
		$\begin{array}{cc}\Delta \mathrm{SV} & \triangle \\ \mathrm{PV} \\ 100^{\circ} \mathrm{C} & 110^{\circ} \mathrm{C}\end{array}$	
	Low deviation: Set as $10^{\circ} \mathrm{C}$	Low deviation: Set as $-10^{\circ} \mathrm{C}$	
Deviation high, low limit	ON ${ }^{-} \mathrm{H}$ OFF H^{2} ON		If deviation between PV and SV as high/low-limit is higher than set value of deviation temperature, the alarm output will be ON.
	$\begin{gathered} \Delta v \\ \hline P V \\ 90^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \Delta \\ \stackrel{\rightharpoonup}{P V} \\ 110^{\circ} \mathrm{C} \end{gathered}$	
	High, Low deviation: Set as $10^{\circ} \mathrm{C}$		
Deviation high, low limit reverse	OFF ${ }^{\text {H }}$	ON \quad - $\mathrm{H} \downarrow$ OFF	If deviation between PV and
	$\begin{array}{ll} \hline \mathrm{PV} \\ 90^{\circ} \mathrm{C} & 10 \end{array}$	$\begin{array}{cc} & \mathrm{PV} \\ & 110^{\circ} \mathrm{C} \\ \hline{ }^{\circ} \mathrm{C} & \end{array}$	SV as high/low-limit is lower than set value of deviation
	High, Low deviation: Set as $10^{\circ} \mathrm{C}$		output will be OFF.
Absolute value high limit	OFF $\mathrm{V}^{4} \mathrm{ON}$	OFF $\quad \mathrm{H}^{4} \mathrm{ON}$	If PV is higher than the absolute value, the output will be ON.
	$\Delta \mathrm{PV}$ $90^{\circ} \mathrm{C}$ $\begin{gathered}\mathrm{SV} \\ 100^{\circ} \mathrm{C}\end{gathered}$	$\begin{array}{cc} \hline \mathrm{SV} & \stackrel{\rightharpoonup}{\mathrm{P}} \\ 100^{\circ} \mathrm{C} & 110^{\circ} \mathrm{C} \\ \hline \end{array}$	
	Absolute value: Set as $90^{\circ} \mathrm{C}$	Absolute value: Set as $110^{\circ} \mathrm{C}$	
Absolute value low limit	ON ${ }^{4} \mathrm{H}$	ON $\uparrow+\mathrm{H}_{\square} \mathrm{OFF}$	If $P V$ is lower than the absolute value, the output will be ON.
	$\begin{array}{cc} \Delta \mathrm{PV} & \underset{\mathrm{SV}}{\mathrm{PV}} \\ 90^{\circ} \mathrm{C} & 100^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{array}{\|cc\|} \hline \mathbf{S V} & \triangle \\ \mathrm{PV} \\ 100^{\circ} \mathrm{C} & 110^{\circ} \mathrm{C} \\ \hline \end{array}$	
	Absolute value: Setas $90^{\circ} \mathrm{C}$	Absolute value: Set as $110^{\circ} \mathrm{C}$	
Sensor break	-		It will be ON when it detects sensor disconnection.
Loop break	-		It will be ON when it detects loop disconnection.

Option		Condition of re-apply
Name	Description	-
Standard alarm	If it is an alarm condition, alarm output is ON. If it is a clear alarm condition, alarm output is OFF.	-
Alarm latch	If it is an alarm condition, alarm output is ON and maintains ON status.	First alarm condition is ignored and from second alarm condition, standard alarm operates. When power is supplied and it is an alarm condition, this first alarm condition is ignored and from the second alarm condition, standard alarm operates.

Segment Table

The segments displayed on the product indicate the following meanings．It may differ depending on the product．

7 segment				11 segment				12 segment				16 segment			
0	0	i	1	0	0	1	I	0	0	1	I	0	0	I	1
1	1	U	J	1	1	U	J	1	1	ل	J	1	1	J	J
2	2	$匕$	K	2	2	＇	K	2	2	K	K	2	2	k	K
3	3	L	L	3	3	L	L	3	3	L	L	3	3	L	L
4	4	ก̄	M	4	4	M	M	4	4	M	M	4	4	M	M
5	5	ก	N	5	5	N	N	5	5	N	N	5	5	id	N
5	6	0	0	5	6	\bigcirc	0	5	6	0	0	5	6	2	0
7	7	P	P	7	7	P	P	7	7	ρ	P	7	7	P	P
8	8	9	Q	8	8	3	Q	8	8	0	Q	8	8	0	Q
9	9	r	R	9	9	R	R	9	9	只	R	9	9	P	R
A	A	5	S	A	A	5	S	A	A	5	S	A	A	5	S
b	B	t	T	b	B	t	T	b	B	t	T	3	B	T	T
［	C	U	U	［	C	U	U	［	C	U	U	［	C	\square	U
d	D	\cup	V	d	D	＂	V	d	D	！	V	3	D	！	V
E	E	\because	W	E	E	in	W	E	E	W	W	E	E	4	W
F	F	4	X	F	F	$\check{ }$	X	F	F	\cdots	X	F	F	＊	X
［	G	4	Y	［	G	y	Y	5	G	4	Y	5	G	i	Y
H	H	三	Z	H	H	7	Z	H	H	7	Z	H	H	Z	Z

