

Note: The largest value becomes the error against a preset value depending on the time range.

GT3 saires Multi-function Timers

Wide Variety Including OFF Delay and Star-Delta

- Universal AC power voltage 100 to 240 V AC
- Solid-state CMOS circuitry ensures high accuracy
- Easy-to-view operation indicator
- DIN 48mm square panel mount adapter for snap mounting
- Complies with safety standards. UL/c-UL listed.
- Complies with EN standard

Applicable Standards	Mark	File No. or Organization
UL508	ULUS	UL/c-UL Listed FSA C22.2 No.14
EN61812-1		EU Low Voltage Directive

[Multi-mode]

- Instantaneous operation at zero setting
- Multi-mode, and universal AC power voltage cover 96 types by one timer

Multi-Mode (Analog Setting)
For details, see pages 5 to 10.

Operation Mode		Model	Contact	Time Range	Output	Operating Voltage	Part No.	
On Delay Interval ON Cycle OFF Cycle ON		GT3A-1	Delayed SPDT	0.1 sec to 180 hours	240V AC, 3A 120V AC/ 30V DC, 5A	100 to 240V AC	GT3A-1AF20	
		GT3A-2	Delayed SPDT + Instantaneous SPDT			100 to 240V AC	GT3A-2AF20	
		24 V AC/24V DC				GT3A-2AD24		
		GT3A-3	Delayed DPDT		240V AC/	100 to 240V AC	GT3A-3AF20	
		24V DC, 5A			24 V AC/24V DC	GT3A-3AD24		
ON Delay	With Input		GT3A-4	Delayed DPDT (11P)	0.1 sec to 180 hours	$\begin{aligned} & 240 \mathrm{~V} \text { AC/ } \\ & 24 \mathrm{~V} \text { DC, } 5 \mathrm{~A} \end{aligned}$	100 to 240V AC	GT3A-4AF20
Cycle Signal ON/OFF Delay Signal OFF Delay		24V AC/24V DC					GT3A-4AD24	
Interval ON		GT3A-5	100 to 240V AC				GT3A-5AF20	
Signal ON/OFF Delay Signal OFF Delay	With Input		24V AC/24V DC				GT3A-5AD24	
One Shot One Shot ON Delay One Shot Signal ON/OFF Delay	With Input	GT3A-6	100 to 240V AC				GT3A-6AF20	
			24V AC/24V DC				GT3A-6AD24	

OFF Delay
For details, see pages 11 to 12.

Operation Mode		Model	Contact	Time Range	Output	Operating Voltage	Part No.
Power OFF Delay	With	GT3F-1	Delayed SPDT	$\begin{aligned} & 0.1 \mathrm{sec} \text { to } \\ & 600 \mathrm{sec} \end{aligned}$	250 V AC/	100 to 240V AC	GT3F-1AF20
	Reset Input				24V DC, 5A	$24 \mathrm{VAC} / 24 \mathrm{~V}$ DC	GT3F-1AD24
	Without	GT3F-2	Delayed DPDT		250 V AC/	100 to 240V AC	GT3F-2AF20
	Reset Input				24V DC, 3A	24 V AC/24V DC	GT3F-2AD24

Star-Delta
For details, see pages 13 to 14.

Operation Mode	Model	Contact	Time Range	Output	Operating Voltage	Part No.
Star-Delta	GT3S-1	Delayed Star: SPST-N0 Delta: SPST-N0	Star: 0.05 to 100 secStar-Delta: 0.05 sec0.1 sec0.25 sec0.5 sec	$\begin{aligned} & 250 \mathrm{~V} \text { AC/ } \\ & 30 \mathrm{VC}, 5 \mathrm{~A} \end{aligned}$	100 to 240V AC	GT3S-1AF20
	GT3S-2	Delayed Star: SPST-NO Delta: SPST-NO Instantaneous: SPST-N0				GT3S-2AF20

Twin-Timer
For details, see pages 15 to 16.

Operation Mode	Model	Contact	Time Range	Output	Operating Voltage	Part No.
Serial Activation Coarse/Fine Adjustment Setting Instantaneous Cycle Cycle Cycle Inversion Interval ON Interval ON Delay Serial Interval ON	GT3W-A	Delayed SPDT + Delayed SPDT	T1: 0.1 sec to 6 hours	$\begin{aligned} & 240 \mathrm{~V} \text { AC, } 3 \mathrm{~A} \\ & 120 \mathrm{VAC/} \\ & 30 \mathrm{~V}, 5 \mathrm{~A} \end{aligned}$	100 to 240V AC	GT3W-A11AF20N
			T2: 0.1 sec to 6 hours		24 V AC/24V DC	GT3W-A11AD24N
			T1: 0.1 sec to 6 hours		100 to 240V AC	GT3W-A13AF20N
			T2: 0.1 sec to 300 hours		24 V AC/24V DC	GT3W-A13AD24N
			T1: 0.1 sec to 300 hours		100 to 240V AC	GT3W-A31AF20N
			T2: 0.1 sec to 6 hours		24 V AC/24V DC	GT3W-A31AD24N
			T1: 0.1 sec to 300 hours		100 to 240V AC	GT3W-A33AF20N
			T2: 0.1 sec to 300 hours		24 V AC/24V DC	GT3W-A33AD24N

GT3A-1, -2, -3 (8-Pin)

Four Selectable Operation Modes in One Timer: ON Delay, Interval ON, Cycle, Cycle ON

(1) Operation Mode	Rated Voltage	Time Ranges	Output	Contact	Part No.
	100 to 240V AC	0.1 sec to 180 hours See Time Ranges for details.	$\begin{aligned} & 240 \mathrm{~V} \text { AC, } 3 \mathrm{~A} \\ & 120 \mathrm{~V} \text { AC/30V DC, } 5 \mathrm{~A} \\ & \text { (resistive load) } \end{aligned}$	Delayed SPDT	GT3A-1AF20
A: ON Delay	100 to 240V AC			Delayed SPDT + Instantaneous SPDT	GT3A-2AF20
	24 V AC/24V DC				GT3A-2AD24
D: Cycle ON	100 to 240V AC		240 V AC/24V DC, 5 A (resistive load)	Delayed DPDT	GT3A-3AF20
	24V AC/24V DC				GT3A-3AD24

Time Ranges

(3) Dial (2) Range	0-1	0-3	0-6	0-18
1 S	$\begin{gathered} 0.1 \mathrm{sec} \text { to } \\ 1 \mathrm{sec} \end{gathered}$	$\begin{gathered} 0.1 \mathrm{sec} \text { to } \\ 3 \mathrm{sec} \end{gathered}$	$\begin{gathered} 0.1 \mathrm{sec} \text { to } \\ 6 \mathrm{sec} \end{gathered}$	$\begin{gathered} \hline 0.2 \mathrm{sec} \text { to } \\ 18 \mathrm{sec} \end{gathered}$
10S	$\begin{aligned} & 0.1 \mathrm{sec} \text { to } \\ & 10 \mathrm{sec} \end{aligned}$	$\begin{gathered} 0.3 \mathrm{sec} \text { to } \\ 30 \mathrm{sec} \end{gathered}$	$\begin{aligned} & 0.6 \mathrm{sec} \text { to } \\ & 60 \mathrm{sec} \end{aligned}$	$\begin{gathered} \hline 1.8 \mathrm{sec} \text { to } \\ 180 \mathrm{sec} \end{gathered}$
10M	$\begin{aligned} & 6 \mathrm{sec} \text { to } \\ & 10 \mathrm{~min} \end{aligned}$	18 sec to 30 min	36 sec to 60 min	$\begin{aligned} & 108 \mathrm{sec} \text { to } \\ & 180 \mathrm{~min} \end{aligned}$
10H	6 min to 10 hours	18 min to 30 hours	36 min to 60 hours	108 min to 180 hours

Contact Ratings

Model	GT3A-1, GT3A-2	GT3A-3
Rated Load	240 V AC, 3A (resistive load) 120 V AC/30V DC, 5 A (resistive load)	240V AC/24V DC, 5 A (resistive load)
Maximum Switching Power	AC: 960VA DC: 120 W	AC: 1200 VA DC: 120 W
Maximum Switching Voltage	250 V AC/150V DC	
Maximum Switching Current	5 A	
Maximum Switching Frequency	600 operations/hour	600 operations/hour
Minimum Applicable Load	5 V DC, 10 mA (reference value)	
External Protection Element	Fuse $250 \mathrm{~V}, 5 \mathrm{~A}$	
Life	Electrical	100,000 operations minimum (rated load)
	Mechanical	$20,000,000$ operations minimum

General Specifications

Model		GT3A-1	GT3A-2	GT3A-3
Operation System		Solid-state CMOS circuitry		
Operation		Multi-Mode		
Time Range		0.1 sec to 180 hours		
Pollution Degree		2 (IEC60664-1)		
Overvoltage Category		III (IEC60664-1)		
Rated Voltage	AF20	100 to 240V AC (50/60Hz)		
	AD24	24 V AC ($50 / 60 \mathrm{~Hz}$)/24V DC		
Voltage Range	AF20	85 to 264V AC (50/60Hz)		
	AD24	20.4 to 26.4V AC (50/60Hz)/21.6 to 26.4V DC		
Reset Voltage		Rated voltage $\times 10 \%$ minimum		
Operating Temperature		-10 to $+50^{\circ} \mathrm{C}$ (no freezing)		
Storage Temperature		-30 to $+70^{\circ} \mathrm{C}$ (no freezing)		
Operating Humidity		35 to 85\% RH (no condensation)		
Storage Humidity		35 to 85\% RH (no condensation)		
Altitude		0 to 2000m (operation), 0 to 3000m (transportation)		
Reset Time		60 ms maximum		
Repeat Error		$\pm 0.2 \%, \pm 10 \mathrm{~ms} \mathrm{maximum} \mathrm{(Note)}$		
Voltage Error		$\pm 0.2 \%, \pm 10 \mathrm{~ms}$ maximum (Note)		
Temperature Error		$\pm 0.2 \%, \pm 10 \mathrm{~ms} \mathrm{maximum} \mathrm{(Note)}$		
Setting Error		$\pm 10 \%$ maximum		
Insulation Resistance		$100 \mathrm{M} \Omega$ minimum (500V DC megger)		
Dielectric Strength		Between power and output terminals: 2000V AC, 1 minute Between contacts of different poles: 2000V AC, 1 minute Between contacts of the same pole: 750 V AC, 1 minute (GT3A-1, 2) 1000 V AC, 1 minute (GT3A-3)		
Vibration Resistance		GT3A-1/-2/-3: Damage limits: 10 to 55 Hz , amplitude 0.75 mm , 2 hours each in 3 directions GT3A-1/-2: Operating extremes: 10 to 55 Hz , amplitude 0.75 mm , 2 hours each in 3 directions GT3A-3: Operating extremes: 10 to 55 Hz , amplitude 0.41 mm , 2 hours each in 3 directions		
Shock Resistance		Operating extremes: $98 \mathrm{~m} / \mathrm{s}^{2}$, Damage limits: $490 \mathrm{~m} / \mathrm{s}^{2}$, 3 shocks each in 6 directions		
Degree of Protection		IP40 (timer), IP20 (socket) (IEC60529)		
	100VAC/60Hz	2.9VA	2.5 VA	2.2VA
	200VAC/60Hz	4.7VA	4.3VA	4.0VA
	D24 (AC/DC)	$1.3 \mathrm{VA} / 0.5 \mathrm{~W}$	2.0VA/0.8W	1.8VA/0.7W
Dimensions		$40 \mathrm{H} \times 36 \mathrm{~W} \times 72.2 \mathrm{D} \mathrm{mm}$		
Weight (approx.)		63 g	73 g	79 g

Note: The largest value becomes the error against a preset value depending on the time range.

Operation Chart

GT3A-4, -5, -6 (11-Pin)

Four Selectable Operation Modes with Start, Gate, and Reset Inputs for External Control

(1) Operation Mode		Rated Voltage Code	Time Ranges	Output	Contact	Input	Part No.
A: ON Delay	B: Cycle OFF	100 to 240V AC	0.1 sec to 180 hours See Time Ranges for details	$\begin{aligned} & 240 \mathrm{~V} \mathrm{AC}, 5 \mathrm{~A} \\ & 24 \mathrm{~V} D \mathrm{DC}, 5 \mathrm{~A} \\ & \text { (resistive load) } \end{aligned}$	Delayed DPDT	Start Reset Gate	GT3A-4AF20
C: Signal ON Delay	D: Signal OFF Delay	24 V AC/24V DC					GT3A-4AD24
A: Interval ON	B: One-Shot Cycle,	100 to 240V AC					GT3A-5AF20
C: Signal ON/OFF Delay	D: Signal OFF Delay	24 V AC/24V DC					GT3A-5AD24
A: One-Shot	B: One-Shot ON Delay	100 to 240V AC					GT3A-6AF20
C: One-Shot	D: Signal 0N/OFF Delay	24 V AC/24V DC					GT3A-6AD24

Time Ranges

(2) Range (3) Dial	$0-1$	$0-3$	$0-6$	$0-18$
1 O	0.1 sec to 1 sec	0.1 sec to 3 sec	0.1 sec to 6 sec	0.2 sec to 18 sec
10 S	0.1 sec to 10 sec	0.3 sec to 30 sec	0.6 sec to 60 sec	1.8 sec to 180 sec
10 M	6 sec to 10 min	18 sec to 30 min	36 sec to 60 min	108 sec to 180 min
	6 min to 10 hours	18 min to 30 hours	36 min to 60 hours	108 min to 180 hours

Contact Ratings

Rated Load	$240 \mathrm{~V} \mathrm{AC} / 24 \mathrm{~V}$ DC, 5A (resistive load)
Maximum Switching Power	AC: 1200 VA DC: 120 W
Maximum Switching Voltage	250 V AC/150V DC
Maximum Switching Current	5 A
Maximum Switching Frequency	600 operations/hour
Minimum Applicable Load	$5 \mathrm{~V} \mathrm{DC,10mA} \mathrm{(reference} \mathrm{value)}$
External Protection Element	Fuse $250 \mathrm{~V}, 5 \mathrm{~A}$
Life	Electrical
	Mechanical

Input Specifications

Start Input	The start input initiates delayed operation and controls output status.	No-voltage contact inputs and NPN open collector transistor
Reset Input	When the reset input goes on (L level), the timer is reset to the inputs are applicable. orinal time (time at power-on).	
24V DC, 1 mA maximum Input response time:		
Gate Input	The time delay operation is suspended while the gate input is on (L level).	ms maximum

General Specifications

Operation System		Solid-state CMOS circuitry
Operation		Multi-mode with inputs (11 pins)
Time Range		0.1 sec to 180 hours
Pollution Degree		2 (IEC60664-1)
Overvoltage Category		III (IEC60664-1)
Rated Voltage	AF20	100 to 240 V AC ($50 / 60 \mathrm{~Hz}$)
	AD24	24 V AC ($50 / 60 \mathrm{~Hz}$)/24V DC
Voltage Range	AF20	85 to 264V AC (50/60Hz)
	AD24	20.4 to 26.4V AC (50/60Hz)/21.6 to 26.4V DC
Reset Voltage		Rated voltage $\times 10 \%$ minimum
Operating Temperature		-10 to $+50^{\circ} \mathrm{C}$ (no freezing)
Storage Temperature		-30 to $+70^{\circ} \mathrm{C}$ (no freezing)
Operating Humidity		35 to 85\% RH (no condensation)
Storage Humidity		35 to 85\% RH (no condensation)
Altitude		0 to 2000 m (operation) 0 to 3000m (transportation)
Reset Time		60 ms maximum
Repeat Error		$\pm 0.2 \%, \pm 10 \mathrm{~ms}$ (Note)
Voltage Error		$\pm 0.2 \%, \pm 10 \mathrm{~ms}$ (Note)
Temperature Error		$\pm 0.2 \%, \pm 10 \mathrm{~ms}$ (Note)
Setting Error		$\pm 10 \%$ maximum
Insulation Resistance		100M Ω minimum (500V DC megger)
Dielectric Strength		Between power and output terminals: 2000V AC, 1 minute Between contacts of different poles: 2000V AC, 1 minute Between contacts of the same pole: 1000 V AC, 1 minute
Vibration Resistance		Damage Limits: 10 to 55 Hz , amplitude 0.75 mm , 2 hours each in 3 directions Operating extremes: 10 to 55 Hz , amplitude $0.41 \mathrm{~mm}, 2$ hour each in 3 directions
Shock Resistance		Operating extremes: $98 \mathrm{~m} / \mathrm{s}^{2}$ Damage limits: $490 \mathrm{~m} / \mathrm{s}^{2}$ 3 shocks each in 6 directions
Degree of Protection		IP40 (timer), IP20 (socket) (IEC60529)
Power Consumption (Approx.)	AF20	2.2VA (100V AC/60Hz), 4.1VA (200V AC/60Hz)
	AD24	1.8 VA (AC)/0.7W (DC)
Dimensions		$40 \mathrm{H} \times 36 \mathrm{~W} \times 72.2 \mathrm{D} \mathrm{mm}$
Weight (approx.)		80 g

Note: The largest value becomes the error against a preset value depending on the time range.

Operation Chart
GT3A-4 \square
Note: While the gate input is on during time delay operation, the POWER indicator flashing slows down.

GT3A-5 \square

GT3A-6 \square

Contact
Internal
Connection
Operation
Mode Selection

MODE

Power is applied to timer at all times. Set timer for desired delay, initiate start input. Contacts immediately transfer. After preset time has elapsed contacts transfer back to original position. Reset occurs with initiation of reset input.

One Shot ON Delay
MODE
B

Set timer for desired delay. When power is applied preset time begins and contacts transfer after preset time has elapsed (no start input needed at this time). Start input is now supplied, this causes the contacts to transfer back to original position. Contacts will remain in this position for preset time, after which they will transfer again. Contacts will now remain in this position until: reset, start input is applied again or power is removed.

One Shot

MODE

Power is applied to timer at all times. Set timer for desired delay, initiate start input. Contacts immediately transfer. After preset time has elapsed contacts transfer back to original position. Reset occurs with initiation of reset input.

Signal ON/OFF Delay
MODE

For this mode a maintained pushbutton is required for start input. Power is applied to timer at all times. Set timer for desired delay, initiate start input. Contacts will transfer immediately. After preset time (with start input still present) contacts will transfer back to original position. Remove start signal, at this time contacts will again transfer. Contacts will transfer to original position after preset time. Timer is reset by initiation of reset input.
initiation of reset input.

GT3F-1/GT3F-2 (8-Pin)

Specifically designed for Power OFF Delay. Reset Inputs are available.

(1) Operation Mode	Rated Voltage Code	Time Ranges	Output	Contact	Input	Part No.
Power OFF Delay	100 to 240V AC	0.1 sec to 600 sec	250V AC/24V DC, 5A	Delayed SPDT	Reset	GT3F-1AF20
	24 V AC/24V DC					GT3F-1AD24
	100 to 240V AC		250V AC/24V DC, 3A	Delayed DPDT	Without	GT3F-2AF20
	24 V AC/24V DC					GT3F-2AD24

Time Ranges

GT3F-1/GT3F-2

(2) Range Dial	$0-1$	$0-3$	$0-18$	$0-60$
1 S	0.1 sec to 1 sec	0.1 sec to 3 sec	0.2 sec to 18 sec	0.6 sec to 60 sec
10 S	0.1 sec to 10 sec	0.3 sec to 30 sec	1.8 sec to 180 sec	6 sec to 600 sec

Timeout Repeat Cycle	3 sec minimum
Reset Input Repeat Cycle	3 sec minimum

Contact Ratings

Model		GT3F-1	GT3F-2
Rated Load		$\begin{aligned} & \hline 250 \mathrm{~V} \text { AC/24V DC, } \\ & 5 \mathrm{~A} \text { (resistive load) } \end{aligned}$	250V AC/24V DC, 3A (resistive load)
Minimum Switching Power		AC: 1250VA DC: 150W	$\begin{aligned} & \text { AC: 750VA } \\ & \text { DC: } 90 \mathrm{~W} \end{aligned}$
Minimum Switching Voltage		250V AC/125V DC	
Minimum Switching Current		5A	3A
Maximum Switching Frequency		1800 operations/hour	
Minimum Applicable Load		5V DC, 10 mA	5 V DC, 100 mA
External Protection Element		Fuse 250V, 5A	Fuse 250V, 3A
Life	Electrical	100,000 operation (rated load)	minimum
	Mechanical	3,000,000 operatio	minimum

Input Specifications

Reset Input	The contact is reset by turning the reset input on (L level). No-voltage contact input and NPN open collector transistor input are applicable. 6V DC, 0.6 mA maximum Input Response Time (AC): ON: 50 ms maximum OFF: 1 sec maximum

General Specifications

Note 1: An inrush current flows during minimum power application time.
AF20: Approx. 0.4A, AD24: Approx. 1.2A
Note 2: The largest value becomes the error against a preset value depending on the time range.

Operation Chart

GT3S-1/GT3S-2 (8-Pin)

Star-Delta Output Mode

(1) Operation Mode	Rated Voltage	Time Range	Output	Contact	Part No.
Star-Delta	100 to 240V AC	Star: 0.05 to 100 sec Star-Delta switching time	250V AC/ 30V DC, 5A (resistive load)	Star: Delayed SPST-NO Delta: Delayed SPST-NO	GT3S-1AF20
		$\begin{aligned} & 0.10 \mathrm{sec} \\ & 0.25 \mathrm{sec} \\ & 0.50 \mathrm{sec} \end{aligned}$		Star: Delayed SPST-NO Delta: Delayed SPST-NO Instantaneous SPST-NO	GT3S-2AF20

Time Ranges

(1) Star Dial Selector		(2) Star-Delta Switching Time Selector	
Dial	Time Range	Indication	Time
$0-5$	$0.05 \mathrm{sec}-5 \mathrm{sec}$	0.05	0.05 sec
$0-10$	$0.1 \mathrm{sec}-10 \mathrm{sec}$	0.1	0.1 sec
$0-50$	$0.5 \mathrm{sec}-50 \mathrm{sec}$	0.25	0.25 sec
$0-100$	$1 \mathrm{sec}-100 \mathrm{sec}$	0.5	0.5 sec

Contact Ratings

Rated Load	$250 \mathrm{~V} \mathrm{AC/30V} \mathrm{DC}, \mathrm{5A} \mathrm{(resistive} \mathrm{load)}$ 250 V AC, $1.5 \mathrm{~A} / 30 \mathrm{~V}$ DC, 2 A (inductive load)
	AC: 1250 VA DC: 150 W
Maximum Switching Voltage	250 V AC/125V DC
Maximum Switching Current	5 A
Maximum Switching Frequency	600 operations/hour
Minimum Applicable Load	5 V DC, 100mA (reference value)
External Protection Element	Fuse $250 \mathrm{~V}, 5 \mathrm{~A}$
Life	Electrical
	Mechanical
	100,000 operations minimum (rated load)

General Specifications

Operation System	Solid-state CMOS circuitry	
Operation	Star-delta	
Time Range	Star side: 0.05 sec to 100 sec Star delta switching time: $0.05,0.1,0.25,0.5 \mathrm{sec}$	
Pollution Degree	2 (IEC60664-1)	
Overvoltage Category	III (IEC60664-1)	
Rated Voltage	100 to 240V AC (50/60Hz)	
Voltage Range	85 to 264V AC ($50 / 60 \mathrm{~Hz}$)	
Reset Voltage	Rated Voltage $\times 10 \%$ minimum	
Operating Temperature	-10 to $+50^{\circ} \mathrm{C}$ (no freezing)	
Storage Temperature	-30 to $+70^{\circ} \mathrm{C}$ (no freezing)	
Operating Humidity	35 to 85\% RH (no condensation)	
Storage Humidity	35 to 85\% RH (no condensation)	
Altitude	0 to 2000 m (operation) 0 to 3000m (transportation)	
Reset Time	500 ms maximum	
Repeat Error	$\pm 0.2 \%, \pm 10 \mathrm{~ms}$ (Note)	
Voltage Error	$\pm 0.2 \%, \pm 30 \mathrm{~ms}$ (Note)	
Temperature Error	$\pm 0.2 \%, \pm 10 \mathrm{~ms}$ (Note)	
Setting Error	$\pm 10 \%$ maximum	
Insulation Resistance	$100 \mathrm{M} \Omega$ minimum (500V DC megger)	
Dielectric Strength	Between power and output terminals: 2000V AC, 1 minute Between contacts of different poles: 2000V AC, 1 minute Between contacts of the same pole: 1000V AC, 1 minute	
Vibration Resistance	Damage limits/operating extremes: 10 to 55 Hz , amplitude 0.75 mm , 2 hours each in 3 directions	
Shock Resistance	Operating extremes: $98 \mathrm{~m} / \mathrm{s}^{2}$, Damage limits: $490 \mathrm{~m} / \mathrm{s}^{2}$, 3 shocks each in 6 directions	
Degree of Protection	IP40 (timer), IP20 (socket) (IEC60529)	
Power Consumption (approx.)	GT3S-1AF20	GT3S-2AF20
	2.3VA (100V AC/60Hz)	2.3VA (100V AC/60Hz)
	4.0VA (200V AC/60Hz)	3.8 VA (200 V AC/60Hz)
Dimensions	$40 \mathrm{H} \times 36 \mathrm{~W} \times 72.2 \mathrm{D} \mathrm{mm}$	
Weight (approx.)	GT3S-1AF20	GT3S-2AF20
	68 g	75 g

Note: The largest value becomes the error against a preset value depending on the time range.

Operation Chart

GT3W-A11, -A13, -A31, A33

Multi-range Twin-Timer with 8 operation modes

(1) Operation Mode	Rated Voltage	Time Ranges		Part No.
		T_{1}	T_{2}	
	100 to 240V AC	0.1 sec to 6 hours	0.1 sec to 6 hours	GT3W-A11AF20N
Coarse/Fine Adjustment	24 V AC/24V DC			GT3W-A11AD24N
Instantaneous Cycle	100 to 240V AC		0.1 sec to 300 hours	GT3W-A13AF20N
Cycle	24 V AC/24V DC			GT3W-A13AD24N
Cycle Inversion	100 to 240V AC	0.1 sec to 300 hours	0.1 sec to 6 hours	GT3W-A31AF20N
Interval ON	24 V AC/24V DC			GT3W-A31AD24N
Interval ON Delay	100 to 240V AC		0.1 sec to 300 hours	GT3W-A33AF20N
Sequential Interval	24 V AC/24V DC			GT3W-A33AD24N

Time Ranges

0.1 sec to 6 hours			0.1 sec to 300 hours		
Time Range Selector	Scale	Time Range	Time Range Selector	Scale	Time Range
1S	0-1	$\begin{gathered} 0.1 \mathrm{sec} \text { to } \\ 1 \mathrm{sec} \end{gathered}$	1 S	0-3	$\begin{gathered} 0.1 \mathrm{sec} \text { to } \\ 3 \mathrm{sec} \end{gathered}$
10S		$\begin{aligned} & 0.3 \mathrm{sec} \text { to } \\ & 10 \mathrm{sec} \end{aligned}$	1M		$\begin{gathered} 3.8 \mathrm{sec} \text { to } \\ 3 \mathrm{~min} \end{gathered}$
10M		15 sec to 10 min	1H		3.8 min to 3 hours
1 S	0-6	$\begin{aligned} & 0.1 \mathrm{sec} \text { to } \\ & 6 \mathrm{sec} \end{aligned}$	1S	0-30	$\begin{gathered} 0.6 \mathrm{sec} \text { to } \\ 30 \mathrm{sec} \end{gathered}$
10S		$\begin{gathered} 1.3 \mathrm{sec} \text { to } \\ 60 \mathrm{sec} \end{gathered}$	1M		$\begin{gathered} 38 \mathrm{sec} \text { to } \\ 30 \mathrm{~min} \end{gathered}$
1M		$\begin{gathered} 7.5 \mathrm{sec} \text { to } \\ 1 \mathrm{~min} \end{gathered}$	1H		38 min to 30 hours
10M		75 sec to 60 min	10H		6.3 hours to 300 hours
1H		7.5 min to 6 hours			

Contact Ratings

Rated Load	240 V AC, 3A (resistive load) 120V AC/ 30V DC, 5A (resistive load)
Maximum Switching Power	AC: 960VA DC: 120 W
	250 V AC/150V DC
Maximum Switching Current	5 A
Maximum Switching Frequency	600 operations/hour
Minimum Applicable Load	5 V DC, 10mA (reference value)
External Protection Element	Fuse 250V, 5A
Life	Electrical
	Mechanical

General Specifications

Operation System		Solid-state CMOS circuitry
Operation		Multi-Mode
Time Range		0.1 sec to 300 hours
Pollution Degree		2 (IEC60664-1)
Overvoltage Category		III (IEC60664-1)
Rated Range	AF20	100 to 240 V AC ($50 / 60 \mathrm{~Hz}$)
	AD24	24 V AC (50/60Hz)/ 24V DC
Voltage Range	AF20	85 to 264V AC ($50 / 60 \mathrm{~Hz}$)
	AD24	20.4 to 26.4V AC ($50 / 60 \mathrm{~Hz}$)/21.6 to 26.4V DC
Reset Voltage		Rated voltage $\times 10 \%$ minimum
Operating Temperature		-10 to $+50^{\circ} \mathrm{C}$ (no freezing)
Storage Temperature		-30 to $+70^{\circ} \mathrm{C}$ (no freezing)
Operating Humidity		35 to 85\% RH (no condensation)
Storage Humidity		35 to 85\% RH (no condensation)
Altitude		0 to 2000m (operation) 0 to 3000 m (transportation)
Reset Time		60 ms maximum
Repeat Error		$\pm 0.2 \%, \pm 10 \mathrm{~ms}$ (Note)
Voltage Error		$\pm 0.2 \%, \pm 10 \mathrm{~ms}$ (Note)
Temperature Error		$\pm 0.6 \%, \pm 10 \mathrm{~ms}$ (Note)
Setting Error		$\pm 10 \%$
Insulation Resistance		$100 \mathrm{M} \Omega$ minimum (500 V DC megger)
Dielectric Strength		Between power and output terminals: 2000V AC, 1 minute Between contacts of different poles: 2000V AC, 1 minute Between contacts of the same pole: 750V AC, 1 minute
Vibration Resistance		Damage limits/operating extremes: 10 to 55 Hz , amplitude 0.75 mm , 2 hours each in 3 directions
Shock Resistance		Operating extremes: $98 \mathrm{~m} / \mathrm{s}^{2}$ Damage limits: 490 v 3 shocks each in 6 directions
Degree of Protection		IP40 (timer), IP20 (socket) (IEC60529)
Power Consumption (approx.)	AF20	2.6 VA (100V AC /60Hz), 5.1VA (200V AC /60Hz)
	AD24	1.8 VA (AC)/0.9W (DC)
Dimensions		$40 \mathrm{H} \times 36 \mathrm{~W} \times 70.0 \mathrm{D} \mathrm{mm}$
Weight (approx.)		73 g

Note: The largest value becomes the error against a preset value depending on the time range.

Operation Chart

Applicable Sockets \& Hold-Down Springs (Optional)
DIN Rail Mount Socket

Item		Part No.	Ordering No.	Applicable Timer	Package Quantity	Remarks
Socket	8-Pin Screw Terminal	SR2P-06B	SR2P-06B	GT3A-1/2/3, GT3F, GT3S, GT3W	1	Hold-down spring: SFA-202 (2 pcs.)
	11-Pin Screw Terminal	SR3P-05B	SR3P-05B	GT3A-4/5/6	1	Hold-down spring: SFA-203 (2 pcs.)
		SR3P-06B	SR3P-06B		1	Hold-down spring: SFA-202 (2 pcs.)
		SR3P-05C	SR3P-05C		1	Finger-safe
Hold-Down Spring		SFA-202	SFA-202PN20	-	10 sets (20 pcs)	For SR2P-06A/SR3P-06A (2 pcs/set)
		SFA-203	SFA-203PN20	-	10 sets (20 pcs)	For SR3P-05A (2 pcs/set)

Note: All are UL recognized, CSA certified, and TÜV approved.
SR2P-06B

SR3P-05B

SFA-202 (2 pcs/set)

SFA-203 (2 pcs/set)

Panel Mount Socket

Item		Part No.	Ordering No.	Applicable Timer	Package Quantity	Remarks
Socket	8-Pin Solder Terminal	SR2P-511	SR2P-511	GT3A-1/2/3, GT3F, GT3S, GT3W	1	-
	11-Pin Solder Terminal	SR3P-511	SR3P-511	GT3A-4/5/6	1	-
Hold-Down Spring		SFA-402	SFA-402PN10	-	10	For SR2P-511/SR3P-511

Note: SR2P-511 and SR3P-511 are UL recognized and CSA certified.
SR2P-511
SR3P-511
SFA-402

Panel Mount Adapter and wiring Socket Adapter

- Finger-safe 11-pin screw wiring socket adapter (Part No.: SR6P-C11) is also available.

Installation of Hold-Down Springs
(DIN Rail Mount Socket)

[^0]
(8-pin Wiring Socket Adapter)

SR6P-S08

(8-pin Screw Wiring Socket Adapter) SR6P-M08G

(Panel Mount Socket)

(11-pin Wiring Socket Adapter)
(11-pin Screw Wiring Socket Adapter)
 SR6P-M11G

When Using DIN Rail Mount Socket
GT3A-1, -2, -3/GT3F/GT3S (8-pin)
(SR2P-06B Socket)

GT3W

- Calculate the dimensions for mounting, referring to the diagrams of SR2P-06A on Relay Sockets catalog.

GT3A-4, $-5,-6$ (11-pin)
(SR3P-05B Socket)

(SR3P-05C Socket)

(SR3P-06B Socket)

- Calculate the dimensions for mounting, referring to the diagrams in Relay Sockets catalog for SR3P-05A, SR3P-05C, and SR3P-06A.
[Internal Connections]
GT3A-1 GT3A-2

GT3A-3

GT3A-4

GT3A-5

GT3A-6

GT3F-1

GT3F-2

GT3S-1

GT3S-2

GT3W

When Using Panel Mount Socket

GT3A-1, -2, -3/GT3F/GT3S/GT3W (8-pin)
(SR2P-511 Socket)

GT3A-4, $-5,-6$
(SR3P-511 Socket)

All GT3 Series

When using DIN 48mm-square Panel Mount Adapter
(For 8-pin solder wiring socket adapter: SR6P-S08 and 11-pin solder wiring socket adapter: SR6P-S11)

(8-pin Screw Terminal Wiring Socket Adapter: SR6P-M08G)

(11-pin Screw Terminal Wiring Socket Adapter: SR6P-M11G)

(Finger-safe 11-pin Screw Terminal Wiring Socket Adapter: SR6P-C11)

Finger-safe structure complies with VDE 0106 T. 100.
(Mounting Hole Layout)

Tolerance: +0.5 to 0 N : No. of timers mounted

Safety Precautions

- Be sure to turn off power before mounting, removal, wiring, maintenance and inspection. Otherwise, electric shock or fire may occur.
- Be sure to use timers within rated specification values. Otherwise electric shock or fire may occur.
- Be sure to use wires to meet voltage and current requirements and tighten M3.5 terminal screws to a torque of 1.0 to $1.3 \mathrm{~N} \cdot \mathrm{~m}$. Be sure to solder the terminals correctly. Loose terminal screws or incomplete soldering may cause abnormal heat and fire.

Instructions

Mode Setting

GT3A only

The operation mode can be selected from A, B, C, and D modes using the Operation Mode Selector. The operation mode is changed from A to B, C, and D in turn by turning the Operation Mode Selector clockwise using a flat screwdriver 4 mm wide maximum and the selected mode is displayed in the window. Since this selector does not turn infinitely, turn the selector clockwise when Mode A is displayed and counterclockwise when Mode D is displayed.

Mode Code and Operation Mode

MOD Code	GT3A-1, -2, -3	GT3A-4	GT3A-5	GT3A-6
A	ON Delay	ON Delay	Interval ON	One-Shot
B	Interval ON	Cycle	One Shot Cycle	One-Shot ON Delay
C	Cycle	Signal ON/OFF Delay	Signal ON/OFF Delay	One-Shot
D	Cycle ON	Signal OFF Delay	Signal OFF Delay	Signal ON/OFF Delay

Time Range Setting

The time range is calibrated at its maximum time scale, therefore, it is desirable to use the timer at a setting as close to its maximum time scale as possible for accurate time delay. For a more accurate time delay, adjust the setting knob by measuring the operating time before application.

1. GT3A (Multi-Mode Analog Setting)

Time range can be selected from $1 \mathrm{~S}, 10 \mathrm{~S}, 10 \mathrm{M}$, and 10 H by turning the Time Range Selector with a flat screwdriver 4 mm wide maximum. The four different ranges of 0 to 1,0 to 3,0 to 6 , and 0 to 18 are displayed in the six windows by turning the Dial Selector, allowing for selecting the best suited scale. Since the selectors do not turn infinitely, turn the selectors clockwise when 1S or 0-1 is displayed and counterclockwise when 10 H or $0-18$ is displayed.

Time Range Determined by Time Range Selector and Dial Selector

Dial Time Range	$0-1$	$0-3$	$0-6$	$0-18$
1 S	0.1 sec to 1 sec	0.1 sec to 3 sec	0.1 sec to 6 sec	0.2 sec to 18 sec
10 S	0.1 sec to 10 sec	0.3 sec to 30 sec	0.6 sec to 60 sec	1.8 sec to 180 sec
10 M	6 sec to 10 min	18 sec to 30 min	36 sec to 60 min	108 sec to 180 min
10 H	6 min to 10 hours	18 min to 30 hours	36 min to 60 hours	108 min to 180 hours

The set time is selected by turning the setting knob.
[Setting Examples]

- When the setting knob is set at 1.5 , with dial 0-3 and time range 10 S selected, then the set time is $15 \mathrm{sec}(1.5 \times 10 \mathrm{~S})$.
- When the setting knob is set at 0.2 , with dial $0-1$ and time range 10 H selected, then the set time is 2 hours $(0.2 \times 10 \mathrm{H})$.

2. GT3F (OFF Delay)

The time range of GT3F-1 and GT3F-2 can be selected between 1S and 10 S with the Time Range Selector by using a flat screw driver. The selected time range ($0-1,0-3,0-18$, or $0-60$) is displayed in the six windows of the Setting Knob by turning Dial Selector which allows to set the scale. Note that the switches do not turn infinitely.
Time Range Determined by Time Range Selector and Dial Selector

(2) Range (1) Dial	$0-1$	$0-3$	$0-18$	$0-60$
1 S	0.1 sec to 1 sec	0.1 sec to 3 sec	0.2 sec to 18 sec	0.6 sec to 60 sec
10 S	0.1 sec to 10 sec	0.3 sec to 30 sec	1.8 sec to 180 sec	6 sec to 600 sec

The set time is selected by turning the Setting Knob.
[Setting Examples]

- When the setting knob is set at 2.5 , with dial $0-3$ and range 1 S selected, then the set time is $2.5 \mathrm{sec}(2.5 \times 1 \mathrm{~S})$.
- When the setting knob is set at 15 , with dial 0-18 and range 10 S selected, then the set time is $150 \mathrm{sec}(15 \times 10 \mathrm{~S})$.

Instructions

3. GT3S (Star-Delta)

The scale range on the star side can be selected from four different ranges of 0 to 5,0 to 10,0 to 50 , and 0 to 100 displayed in the six windows by turning the Star Dial Selector. Note that the selectors does not turn infinitely.

Time Range Determined by Time Range Selector and Dial Selector

Star Dial Selector		Star-Delta Switching Time Selector	
Dial	Time Range	Indication	Time
$0-5$	$0.05 \mathrm{sec}-5 \mathrm{sec}$	0.05	0.05 sec
$0-10$	$0.1 \mathrm{sec}-10 \mathrm{sec}$	0.1	0.1 sec
$0-50$	$0.3 \mathrm{sec}-50 \mathrm{sec}$	0.25	0.25 sec
$0-100$	$1 \mathrm{sec}-100 \mathrm{sec}$	0.5	0.5 sec

The Star ON time is selected by turning the Setting Knob.
[Setting Examples]

- If the setting knob is set at 8 , with Star Dial Selector 0-10 and StarDelta switching time 0.1 S selected, the Star ON time (T_{1}) is 8 sec and the Star-Delta switching time (T_{2}) is 0.1 sec .

4. GT3W [Twin-Timer]

Use a flat screwdriver with a diameter of 4 mm maximum to turn Time Range Selector and gain time range as shown in the table below. Note that the selectors do not turn infinitely.
Time Range Determined by Time Range Selector and Dial Selector

0.1 sec to 6 hours			0.1 sec to 300 hours		
Time Range Selector	Scale	Time Range	Time Range Selector	Scale	Time Range
1S	0-1	$\begin{gathered} 0.1 \mathrm{sec} \text { to } \\ 1 \mathrm{sec} \end{gathered}$	1 S	0-3	$\begin{gathered} 0.1 \mathrm{sec} \text { to } \\ 3 \mathrm{sec} \end{gathered}$
10S		$\begin{aligned} & 0.3 \mathrm{sec} \text { to } \\ & 10 \mathrm{sec} \end{aligned}$	1M		$\begin{gathered} 3.8 \mathrm{sec} \text { to } \\ 3 \mathrm{~min} \end{gathered}$
10M		$\begin{aligned} & 15 \mathrm{sec} \text { to } \\ & 10 \mathrm{~min} \end{aligned}$	1H		3.8 min to 3 hours
1 S	0-6	$\begin{gathered} 0.1 \mathrm{sec} \text { to } \\ 6 \mathrm{sec} \end{gathered}$	1 S	0-30	$\begin{gathered} 0.6 \mathrm{sec} \text { to } \\ 30 \mathrm{sec} \end{gathered}$
10S		$\begin{gathered} 1.3 \mathrm{sec} \text { to } \\ 60 \mathrm{sec} \end{gathered}$	1M		38 sec to 30 min
1M		$\begin{gathered} 7.5 \mathrm{sec} \text { to } \\ 1 \mathrm{~min} \end{gathered}$	1H		38 min to 30 hours
10M		75 sec to 60 min	10H		6.3 hours to 300 hours
1H		7.5 min to 6 hours			

Note: No blank time range can be set.

Selector Setting

- Use a flat screwdriver with a diameter of 4 mm maximum to turn the selector. Turn the selector until it clicks. Otherwise, malfunction may occur. Also, do not rotate the selector forcibly since the selector does not turn infinitely.
- Since changing the setting during operation may cause malfunction, turn power off before changing the setting.

Power

- Since DC types have a polarity in their power supply connection, connect the power according to wiring diagram.
- Since AC type GT3A, GT3S, and GT3W comprise a capacitive load, the SSR dielectric strength should be two or more times as large as the power voltage when switching the timer power using an SSR.

Wiring

The GT3F, consisting of a high-impedance circuit, may not be reset due to the influence of an inductive voltage or residual voltage caused by a leakage current. In not reset, connect an RC filter or bleeder resistor between power terminals so that the voltage between power terminals can be reduced to less than 15% of the rated voltage.

Instructions

Inputs of GT3A and GT3F

To avoid electric shock, do not touch the input signal terminal during power voltage application.

- When connecting the input signal terminals of two or more GT3A timers to the same contact or transistor, the input terminals of the same number should be connected. (Connect Terminals No. 2 in common.)
- Never apply the input signals to two or more GT3F timers using the same contact or transistor.

- In a transistor circuit for controlling input signals with its primary and secondary power circuits isolated, do not ground the secondary circuit.

- Do not connect input signal terminals of the GT3A timer to other terminals than No. 2. Never apply voltage to input signal terminals. Otherwise, the internal circuit may be damaged.

- Do not connect input signal terminals of the GT3F timer to other terminals than No. 2. Never apply voltage to input signal terminals. Otherwise, the internal circuit may be damaged.
- Input signal lines must be made as short as possible and installed away from power cables and power lines. Shielded wires or a separate conduit should be used for input wiring.
- For contact input, use reliable gold-plated contacts to make sure that the residual voltage is less than 1 V when the contacts are closed.

- For transistor input, use transistors with following specifications; Vce $=40 \mathrm{~V}$, Vces $=1 \mathrm{~V}$ or less, Ic $=50 \mathrm{~mA}$ or more, Icbo $=50 \mu \mathrm{~A}$ or less. The resistance should be less than $1 \mathrm{k} \Omega$ when the transistor is on. When the output transistor switches on, a signal is inputted to the timer.

GT3A

Transistor output equipment such as proximity switches and photoelectric switches can input signals if they are voltage/current output type, power voltage ranges from 18 to 30 V , and residual voltage is 1 V . When the signal voltage switches from H to L , a signal is inputted to the timer.

GT3F
Do not input signals using transistor output equipment of a voltage/ current output type. Otherwise, the internal circuit may be damaged.

Minimum Power Application Time

If the power application time to the GT3F is shorter than the minimum power application time, the output relay may not operate or the timer may operate faster than the preset time.

Time Range Setting

Repeat error is calibrated at its maximum time scale, therefore, it is desirable to use the timer at a setting as close to its maximum time scale as possible for accurate time delay. For a more accurate time delay, adjust the setting knob by measuring the operating time before application.

Time Accuracy

Repeat Error

This indicates variance of operation time when operation is repeated under the same conditions. The variance is calculated from the following formula and the measurements should be done 5 times at least.

$$
= \pm \frac{1}{2} \times \frac{\text { Max. measured value }- \text { Min. measured value }}{\text { Maximum scale value }} \times 100(\%)
$$

Voltage Error

This indicates the variance of operation time when the voltage at operation current varies within allowable voltage variance.
$= \pm \frac{\mathrm{Tv}-\mathrm{Tr}}{\mathrm{Tr}} \times 100$ (\%)
Tv: Average of measured operation time values at voltage V Tr : Average of measured operation time values at the raged voltage

Temperature Error

This indicates the influence caused by the change in temperature during operation within operating temperature. This is shown with the variance of operation time.
$= \pm \frac{\mathrm{Tv}-\mathrm{Tr}}{\mathrm{Tr}} \times 100(\%)$
Tv: Average of measured operation time values at voltage V
Tr : Average of measured operation time values at the raged voltage

Setting Error

This indicates the deviation, range, and gap between actual operation time and that on scale.
$= \pm \frac{\text { Average of measured values }- \text { Set value }}{\text { Maximum scale value }} \times 100(\%)$
Ex.)
GT3 setting error: $\pm 10 \%$
When the maximum scale value is 10 sec . and setting time is 1 to 3 sec ., the setting error $\mathrm{ia} \pm 1 \mathrm{sec}$. and operating time is 1 to 3 sec . When setting a value near the lower limit, be sure to confirm the actual operating time.

Instructions

Load Current

The rated current of the contact (or control output) should not be exceeded. Especially for inductive, capacitive, and incandescent lamp loads, the inrush current as large as a few to several tens times the rated current may cause welded contacts and other troubles. The amount of inrush current as well as steady-state current must be taken into consideration.

Contact Protection

Switching an inductive load generates a counter-electromotive force in the coil. The counter emf will cause arcing, which may shorten the contact life. Application of a protection circuit is recommended for contact protection.

Rest Time

When turning power off after time-out or during operation, allow a rest time longer than the reset time to restart. (Each model has a different reset time.)

Continuous Energizing

Continuous energizing for a long period of time may damage the electrical characteristics of the timer because of internal heating. Use an additional relay to the output circuit and refrain from continuous energizing of the timer.

Dielectric Strength Test

When performing an insulation resistance or dielectric-strength test on control panels containing timers, make sure that the dielectric strength of the timer is not exceeded. In case the dielectric strength is exceeded, remove the timers from the panels.

Operating Environment

Temperature and Humidity

Use the timer within the operating temperature and operating humidity ranges and prevent freezing and condensation. After storing below the operation temperature, leave the timer at room temperature for a sufficient period of time before use.

Environment

Prevent a corrosive gas such as sulfurous or ammonia gas, organic solvents (alcohol, benzine, thinner, etc.), strong alkaline substances or strong acids from touching to the timer, and do not use the timer in such an environment. Keep the timer from water splashes or steam.

Vibration and Shock

Since excessive vibrations or shocks cause the output contacts to open, the timer should be used within the operating extremes of vibration and shock resistance. Use of hold-down springs is recommended for secure mounting on sockets.
Noise and Static Charge
Check the operation of the timer before using in an environment with a lot of noise. Install the input signal source, input signal wiring and timer away from noise source and high-voltage wire with noise as much as possible. Also, in case of using the timer under the environment with multiple static charge (pipe transportation of molding material, power/liquid material, etc.), place the timer away from such static charge source as well.

Others

- The GT3F does not read the preset values of each selector after power is turned off. Note that minimizing the preset time does not shorten the delay time after power is turned off.
- To make a sequence circuit by connecting timers and relays, check the timer operation sufficiently in consideration of the reset time of the timer.
- Storage temperature should range from $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. If the product has been stored at a temperature below $-10^{\circ} \mathrm{C}$, leave the product at room temperatures for more than 3 hours before using.
- Do not remove the housing.
- In the GT3 timers, latching relay is used for output relay. Shocks such as dropping during transportation or handling may cause the output to be different from the initial value. Be sure to check the output status using a tester.

GT5Y saies Miniature Electronic Timers

Four Selectable Operation Modes. Six Selectable Time Ranges. Delayed Output 4PDT/3A or DPDT/5A.

- Four operation modes: ON Delay, Interval ON, Cycle OFF, and Cycle ON
- Repeat error: $\pm 0.2 \% \pm 20 \mathrm{~ms}$ maximum
- Miniature size
- LED indicators for output and power
- Complies with safety standards. UL/c-UL listed. EN compliant.

Applicable Standards	Mark	File No. or Organization
UL508 CSA C22.2 No.14	UL)	
EN61812-1	UL/C-UL Listed File No. E55996	

Note: When using as a UL Listing approved product, use IDEC timer sockets under the below conditions.
SY4S-05*, SM2S-05* (Specify A, B, C, DF, DN, or U in place of *)

- Wire conductor temperature rating: $60^{\circ} \mathrm{C}$ min.
- Copper wire only: AWG14 max. ($2 \mathrm{~mm}^{2}$ max.), AWG14 max. ($0.9 \mathrm{~mm}^{2}$ max.)
- Tightening torque: 0.6 to $1.0 \mathrm{~N} \cdot \mathrm{~m}$

SU4S-11L, SU2S-11L

- Wire conductor temperature rating: $60^{\circ} \mathrm{C} \mathrm{min}$.
- Copper wire only: AWG16 max. (solid wire $1.5 \mathrm{~mm}^{2}$ max., stranded wire $1.25 \mathrm{~mm}^{2}$ max.), AWG18 max. ($0.9 \mathrm{~mm}^{2}$ max.)

Package Quantity: 1

(1) Operation Mode	Contact	Output	Time Ranges	Operating Voltage	Part No. (Ordering No.)
A: ON Delay	DPDT	$\begin{aligned} & 220 \mathrm{~V} \text { AC/ } \\ & 30 \mathrm{DC}, 5 \mathrm{~A} \end{aligned}$	0.1 S to 10H	100 to 120V AC	GT5Y-2SN1A100
			0.15 to 30H		GT5Y-2SN3A100
			0.15 to 60 H		GT5Y-2SN6A100
			0.15 to 10H	200 to 240V AC	GT5Y-2SN1A200
			0.1 S to 30 H		GT5Y-2SN3A200
			0.15 to 10H	12V DC	GT5Y-2SN1D12
			0.15 to 30H		GT5Y-2SN3D12
			0.15 to 60 H		GT5Y-2SN6D12
B: Interval ON			0.15 to 10H	24 V DC	GT5Y-2SN1D24
			0.15 to 30 H		GT5Y-2SN3D24
			0.15 to 60 H		GT5Y-2SN6D24
C: Cycle OFF	4PDT	30V DC, 3A	0.15 to 10H	100 to 120V AC	GT5Y-4SN1A100
			0.1 S to 30H		GT5Y-4SN3A100
			0.15 to 60 H		GT5Y-4SN6A100
D: Cycle ON			0.15 to 10H	200 to 240V AC	GT5Y-4SN1A200
			0.15 to 30H		GT5Y-4SN3A200
			0.15 to 60 H		GT5Y-4SN6A200
			0.15 to 30 H	12V DC	GT5Y-4SN3D12
			0.15 to 10H	24V DC	GT5Y-4SN1D24
			0.15 to 30H		GT5Y-4SN3D24
			0.15 to 60H		GT5Y-4SN6D24

Time Ranges

Code	Scale	(2) Time Range Indication	Time Range
1: 0.1 S to 10 H	0 to 1	1S	0.1 sec to 1 sec
		10S	0.2 sec to 10 sec
		1M	1 sec to 1 min
		10M	10 sec to 10 min
		1H	1 min to 1 hr
		10 H	10 min to 10 hr
3: 0.1 S to 30 H	0 to 3	1 S	0.1 sec to 3 sec
		10S	0.5 sec to 30 sec
		1M	3 sec to 3 min
		10M	30 sec to 30 min
		1 H	3 min to 3 hr
		10H	30 min to 30 hr
6: 0.15 to 60 H	0 to 6	1 S	0.1 sec to 6 sec
		10S	1 sec to 60 sec
		1M	6 sec to 6 min
		10M	1 min to 60 min
		1H	6 min to 6 hr
		10H	60 min to 60 hr

Note: S and M of the time range indicate second, and minute respectively.

Contact Ratings

Part No.			GT5Y-4	GT5Y-2
Contact Configuration			4PDT	DPDT
Rated Load	Resistive Load		220 V AC, 3A/30V DC, 3A	220 V AC, 5A/30V DC, 5A
	Inductive Load	$\cos \emptyset=0.3, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}$	220 V AC, $0.8 \mathrm{~A} / 30 \mathrm{~V}$ DC, 1.5A	220 V AC, 2A/30V DC, 2.5A
Maximum Switching Voltage			250 V AC/125V DC	250 V AC/125V DC
Maximum Switching Current			3A	5 A (Note)
Maximum Switching Frequency			1800 operations/hour	1800 operations/hour
Allowable Contact Power	Resistive Load		AC: 660VA/DC: 90W	AC: 1100VA/DC: 150 W
	Inductive Load	$\cos \emptyset=0.3, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}$	AC: 176VA/DC: 45 W	AC: 440VA/DC: 75 W
Minimum Applicable Load			5 V DC, 10 mA (reference value)	5 V DC, 20 mA (reference value)
			24 V DC, 5mA (reference value)	24 V DC, 10 mA (reference value)
External Protection Element			Fuse 250V 3A	Fuse 250V 5A
Life	Electrical		200,000 operations minimum (220V AC, 3A)	500,000 operations minimum (220V AC, 5A)
	Mechanical		50 million operations minimum	50 million operations minimum

[^1]Operating Temperature - Maximum Switching Current Characteristics
Check the derating curve described below when mounting more than two GT5Y-2 timers and SM2S-05* sockets.

General Specifications

Model		GT5Y- \square SN
Operation		ON Delay / Interval ON / Cycle OFF / Cycle ON
Pollution Degree		2 (IEC60664-1)
Overvoltage Category		III (IEC60664-1)
Rated Operational Voltage	A200	200 to 240V AC ($50 / 60 \mathrm{~Hz}$)
	A100	100 to 120V AC (50/60Hz)
	D24	24V DC
	D12	12V DC
Voltage Range	A200	170 to 264V AC (50/60Hz)
	A100	85 to 132V AC (50/60Hz)
	D24	21.6 to 26.4V DC
	D12	10.8 to 13.2V DC
Reset Voltage		Rated Voltage $\times 20 \%$ minimum
Operating Temperature		-10 to $+50^{\circ} \mathrm{C}$ (no freezing and condensation)
Storage/Transportation Temperature		-30 to $+80^{\circ} \mathrm{C}$ (no freezing and condensation)
Operating Humidity		35 to 85\% RH (no condensation)
Storage Humidity		35 to 85\% RH (no condensation)
Altitude		0 to 2000m (operation), 0 to 3000m (transportation)
Reset Time		100 ms maximum
Repeat Error		Within $\pm 0.2 \%, \pm 20 \mathrm{~ms}$
Voltage Error		Within $\pm 0.5 \%, \pm 20 \mathrm{~ms}$
Temperature Error		$\pm 3 \%$
Setting Error		$\pm 10 \%$
Insulation Resistance		$100 \mathrm{M} \Omega$ minimum (500V DC megger)
Dielectric Strength		Between power and output terminals: 2000V AC, 1 minute Between contacts of different poles: 2000V AC, 1 minute Between contacts of the same pole: 1000 V AC, 1 minute
Vibration Resistance		Operating extremes: 10 to 55 Hz , amplitude 0.5 mm , 10 minutes each in 3 directions Damage limits: 10 to 55 Hz , amplitude 0.75 mm , 2 hours each in 3 directions
Shock Resistance		Operating extremes: $98 \mathrm{~m} / \mathrm{s}^{2}$, Damage limits: $490 \mathrm{~m} / \mathrm{s}^{2}, 3$ shocks each in 6 directions
Degree of Protection		IP40 (timer), IP20 (socket) (IEC60529)
Power Consumption (approx.)	A200	1.2 VA (200V AC/60Hz), 1.2 VA (200V AC/50Hz)
	A100	1.1 VA (100V AC/60Hz), 1.2 VA (100V AC/50Hz)
	D24	1.0W
	D12	0.9W
Dimensions		$27.7 \mathrm{H} \times 21.0 \mathrm{~W} \times 58.3 \mathrm{D} \mathrm{mm}$
Weight (approx.)		42 g

Note: See Operating Temperature - Maximum Switching Current Characteristics.

Electrical Life Curves

Operation Charts and Internal Connections

Dimensions

(When using DIN Rail Mount Socket)
 GT5Y-4

See Relay Sockets catalog for SY4S-05B, SY4S-05C, SY4S-05D, SY4S-05DF.

Note 1: SY4S-05B: 83.3 max., SY4S-05C: 83.3 max., SY4S-05D: 88.3 max.,SY4S-05DF: 88.3 max
Note 2: SY4S-05B: 86.8 max., SY4S-05C: 86.8 max. SY4S-05D: 91.8 max.,SY4S-05DF: 91.8 max.

GT5Y-4 and SU4S-11L, GT5Y-2 and SU2S-11L

Applicable hold-down spring: SFA-202

GT5Y-2

See Relay Sockets catalog for SM2S-05B, SM2S-05C, SM2S-05D, SM2S-05DF.

Note 3: SM2S-05B: 83.3 max., SM2S-05C: 83.3 max., SM2S-05D: 88.3 max.,SM2S-05DF: 88.3 max.
Note 4: SM2S-05B: 86.8 max., SM2S-05C: 86.8 max., SM2S-05D: 91.8 max.,SY4S-05DF: 91.8 max.

Accessories

Accessories

Both SY4S-05B, SY4S-05C, SY2S-05B, SM2S-05B, and SM2S-05C are UL recognized, CSA certified, and TÜV approved. Others are UL recognized and CSA certified, except for SY4S-05A and SM2S-05A.
When ordering, specify the Ordering No.

Item		Part No.	Ordering No.	Package Quantity	Remarks
DIN Rail Mount Socket	Socket	SY4S-05B	SY4S-05A	1	For 4PDT contact (Screw)
		SY4S-05C	SY4S-05C	1	For 4PDT contact (Screw)
		SY4S-05DF	SY4S-05DF	1	For 4PDT contact (Screw)
		SU2S-21L	SU2S-21L	1	For DPDT contact (Push-in)
		SU4S-21L	SU4S-21L	1	For 4PDT contact (Push-in)
		SM2S-05B	SM2S-05A	1	For DPDT contact (Screw)
		SM2S-05C	SM2S-05C	1	For DPDT contact (Screw)
		SM2S-05DF	SM2S-05DF	1	For DPDT contact (Screw)
	Hold-Down Spring	SFA-202	SFA-202PN20	10 sets (20 pcs)	For SY4S-05A, SM2S-05A (2 pcs/set)
		SFA-511	SFA-511PN20	20	For SY4S-05D, SY4S-05DF, SM2S-05D, SM2S-05DF
		SU9Z-S21T	SU9Z-S21T	10	For SU2S-21L, SU4S-21L
Panel/PC Board Mount Socket	Socket	SY4S-51	SY4S-51	1	For 4DPT contact, Solder Terminal
		SY4S-61	SY4S-61	1	For 4DPT contact, PC Board Terminal
		SM2S-51	SM2S-51	1	For DPDT contact, Solder Terminal
		SM2S-61	SM2S-61	1	For DPDT contact, PC Board Terminal
	Hold-Down Spring	SFA-302	SFA-302PN20	10 sets (20 pcs)	For SY4S-51, SY4S-61, SM2S-51, SM2S-61 (2 pcs/set)

GT5P saires Miniature Electronic Timers

Economic Efficiency Focused
 Delayed Output SPDT/5A

- Three operation modes: ON Delay, Cycle, and One Shot
- Repeat error: $\pm 0.2 \% \pm 10 \mathrm{~ms}$ maximum
- Complies with safety standards

UL recognized, CSA certified, TÜV approved, EN compliant

Applicable Standards	Mark	File No. or Organization
UL508	UU/C-UL recognized File No. E55996	
CSA C22.2 No.14	CS:	CSA File No. LR66809
EN61812-1	EU Low Voltage Directive	

Package Quantity: 1					
Operation Mode	Contact	Output	Time Range	Operating Voltage	Part No. (Ordering No.)
ON Delay	SPDT	$\begin{aligned} & 24 \mathrm{~V} D / \\ & 120 \mathrm{AC}, 5 \mathrm{~A} \\ & 240 \mathrm{VAC}, 3 \mathrm{~A} \end{aligned}$	35	100 to 120V AC	GT5P-N3SA100
			10 S		GT5P-N10SA100
			30S		GT5P-N30SA100
			605		GT5P-N60SA100
			3M		GT5P-N3MA100
			6M		GT5P-N6MA100
			10M		GT5P-N10MA100
			1 S	200 to 240V AC	GT5P-N1SA200
			6 S		GT5P-N6SA200
			10S		GT5P-N10SA200
			30S		GT5P-N30SA200
			60S		GT5P-N60SA200
			3M		GT5P-N3MA200
			6M		GT5P-N6MA200
			10M		GT5P-N10MA200
			1 S	24V AC/DC	GT5P-N1SAD24
			6 S		GT5P-N6SAD24
			10S		GT5P-N10SAD24
			60S		GT5P-N60SAD24
			6M		GT5P-N6MAD24
			10M		GT5P-N10MAD24
			10S	12 V DC	GT5P-N10SD12
			30S		GT5P-N30SD12
			60S		GT5P-N60SD12
			10M		GT5P-N10MD12
Cycle	SPDT	$\begin{array}{\|l} 24 \mathrm{~V} D C / \\ 120 \mathrm{VAC}, 5 \mathrm{~A} \\ 240 \mathrm{VCC} \end{array}$	35	100 to 120V AC	GT5P-F3SA100
			10S		GT5P-F10SA100
			3 S	200 to 240V AC	GT5P-F3SA200
			10S		GT5P-F10SA200
			35	$24 \mathrm{VAC/DC}$	GT5P-F3SAD24
			10S		GT5P-F10SAD24
			3 S	12 V DC	GT5P-F3SD12
			10S		GT5P-F10SD12
One Shot	SPDT	$\begin{array}{\|l\|l\|} \hline 24 V D C / \\ 120 V A C, 5 A \\ \hline \end{array}$$240 \mathrm{VAC}, 3 \mathrm{~A}$	35	100 to 120V AC	GT5P-P3SA100
			35	200 to 240V AC	GT5P-P3SA200
			10S		GT5P-P10SA200
			3 S	24V AC/DC	GT5P-P3SAD24
			10S		GT5P-P10SAD24

Time Ranges

Code	Time Range
1 S	0.1 sec to 1 sec
3 S	0.1 sec to 3 sec
6 S	0.1 sec to 6 sec
10 S	0.2 sec to 10 sec
30 S	0.5 sec to 30 sec
60 S	1 sec to 60 sec
3 M	3 sec to 3 min
6 M	6 sec to 6 min
10 M	10 sec to 10 min

Contact Ratings

Contact Configuration		SPDT
Maximum Switching Voltage		250 V AC, 150 V DC
Maximum Switching Current		5A
Maximum Switching Power		$\begin{aligned} & \text { AC: 960VA } \\ & \text { DC: 120W } \end{aligned}$
	Resistive Load	$\begin{aligned} & 120 \mathrm{~V} \text { AC / } 24 \mathrm{~V} \text { DC, } 5 \mathrm{~A} \\ & 240 \mathrm{VAC}, 3 \mathrm{~A} \end{aligned}$
	$\begin{aligned} & \text { Inductive Load } \\ & \cos \theta=0.4 \\ & L / R=15 \mathrm{~ms} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 240V AC, } 0.8 \mathrm{~A} \\ & 120 \mathrm{~V} \mathrm{AC}, 1.4 \mathrm{~A} \\ & 24 \mathrm{~V} \text { DC, } 1.7 \mathrm{~A} \end{aligned}$
$\stackrel{\text { ¢ }}{\square}$	Electrical	100,000 operations minimum (rated resistive load)
	Mechanical	20,000,000 operations minimum

Minimum Applicable Load: 5V DC 10 mA (reference value)

[^2]
General Specifications

Model		GT5P-N	GT5P-F	GT5P-P
Operation		ON Delay	Cycle	One Shot
Pollution Degree		2 (IEC60664-1)		
Rated Operational Voltage	A200	200 to 240V AC ($50 / 60 \mathrm{~Hz}$)		
	A100	100 to 120V AC (50/60Hz)		
	AD24	24 V AC ($50 \mathrm{~Hz} / 60 \mathrm{~Hz}$)/24V DC		
	D12	12V DC		
Voltage Range	A200	170 to 264V AC (50/60Hz)		
	A100	85 to 132V AC (50/60Hz)		
	AD24	20.4 to 26.4V AC ($50 / 60 \mathrm{~Hz}$)/21.6 to 26.4V DC		
	D12	10.8 to 13.2V DC		
Operating Temperature		-10 to $+50^{\circ} \mathrm{C}$ (no freezing)		
Storage Temperature		-30 to $+70^{\circ} \mathrm{C}$ (no freezing)		
Operating Humidity		35 to 85\% RH (no condensation)		
Storage Humidity		30 to 85\% RH (no condensation)		
Altitude		0 to 2000m (operation), 0 to 3000 m (transportation)		
Reset Time		100 ms maximum		
Repeat Error		$\pm 0.2 \%, \pm 10 \mathrm{~ms}$		
Voltage Error		$\pm 0.5 \%, \pm 20 \mathrm{~ms}$		
Temperature Error		$\pm 3 \%$		
Setting Error		$\pm 10 \%$		
Insulation Resistance		100 M 2 minimum (500V DC megger)		
Dielectric Strength		Between power and output terminals: 2000V AC, 1 minute Between contacts of different poles: 2000V AC, 1 minute Between contacts of the same pole: 750 V AC, 1 minute		
Vibration Resistance		Operating extremes: 10 to 55 Hz , amplitude 0.75 mm , 10 minutes each in 3 directions Damage limits: 10 to 55 Hz , amplitude 0.75 mm , 2 hours each in 3 directions		
Shock Resistance		Operating extremes: $98 \mathrm{~m} / \mathrm{s}^{2}$, Damage limits: $490 \mathrm{~m} / \mathrm{s}^{2}$		
Power Consumption (approx.)	A200	$5.0 \mathrm{VA}(60 \mathrm{~Hz})$		$5.0 \mathrm{VA}(60 \mathrm{~Hz})$
	A100	2.9 VA (60Hz)		$2.9 \mathrm{VA}(60 \mathrm{~Hz})$
	AD24	1.4 VA (60Hz)/0.5W		1.4 VA (60Hz)/0.5W
	D12	0.6 W		0.6W
Dimensions		$36 \mathrm{H} \times 29 \mathrm{~W} \times 81.5 \mathrm{D} \mathrm{mm}$		
Weight (approx.)		54 g		

Electrical Life Curves

Operation Charts and Internal Connections

Dimensions

(When using DIN Rail Mount Socket)
SR2P-05B
For SR2P-05C, see Relay Sockets catalog.

SR2P-06B

Note 1: SR2P-05C: 99.5 max.
Note 2: SR2P-05C: 103.5 max.

Mounting Hole Layout (for Panel/PC Board Mount Socket)

1. GT5Y-4

Panel Mount Socket (SY4S-51)

PC Board Mount Socket (SY4S-61)

2. GT5Y-2

Panel Mount Socket (SM2S-51)

PC Board Mount Socket (SM2S-61)
3. GT5P

Solder Terminal (SR2P-511)

Wire Wrap Terminal (SR2P-70)

Accessories

Item		Part No.	Ordering No.	Package Quantity	Remarks
DIN Rail Mount Socket	Socket	SR2P-06B	SR2P-06B	1	
		SR2P-05B	SR2P-05B	1	
		SR2P-05C	SR2P-05C	1	UL/CSA/TÜV
	Hold-Down Spring	SFA-202	SFA-202PN20	10 sets (20 pcs)	For SR2P-06A (2 pcs/set)
		SFA-203	SFA-203PN20	10 sets (20 pcs)	For SR2P-05A (2 pcs/set)
Panel Mount Socket	w/Solder Terminals	SR2P-511	SR2P-511	1	UL/CSA
	w/Wire Wrap Terminals	SR2P-70	SR2P-70	1	

Installation of Hold-Down Springs
 DIN Rail Mount Socket

Recommended Tightening Torque and Terminal Screw

Timer	Applicable Socket	Terminal Screw	Recommended Tightening Torque
GT5Y	SY4S-05 SM2S-05	M3	0.6 to $1.0 \mathrm{~N} \cdot \mathrm{~m}$

Note 1: Once installed into sockets, the hold-down springs cannot be removed. Note 2: Hold-down springs cannt be used on SR2P-511 for GT5P.

Recommended Tightening Torque and Terminal Screw

Timer	Applicable Socket	Terminal Screw	Recommended Tightening Torque
GT5P	SR2P-05 SR2P-06	M3.5	1.0 to $1.3 \mathrm{~N} \cdot \mathrm{~m}$

Panel/PC Board Mount Socket

The SFA-302 Hold-Down Springs can be installed to the SY4S-51, SY4S-61, SM2S-51, and SM2S-61 sockets.

Hold-down springs cannot be installed to SR2P-511 and SR2P-70 panel mount sockets.

Installation/Removal of Hold-Down Springs

(Installation)
Insert the hold-down springs (SFA-511) into mounting holes
1 and 2 with the projection facing outside.

(Removal)
Press the projections of Hold-Down Springs (SFA-511) in the direction shown in the arrow and pull upward to remove.

Installation/Removal of Hold-Down Springs

(Installation)
Insert the springs (SFA-511) into mounting holes 1 and 2 with the projection facing outside.

(Removal)
Press the projections of Hold-Down Springs (SFA-511) in the direction shown in the arrow and pull upward to remove.

Note: Apply the same method to SY4S-05DF.

. Safety Precautions

- Be sure to turn off power before mounting, removal, wiring, maintenance and inspection. Otherwise, electric shock or fire could occur.
- Be sure to use timers within rated specification values. Otherwise, electric shock or fire may occur.
- Be sure to use wires to meet voltage and current requirements and tighten M3.5 terminal screws to a tightening torque of 1.0 to $1.3 \mathrm{~N} \cdot \mathrm{~m}$. Be sure to solder the terminals correctly. Loose terminal screws or incomplete soldering may cause abnormal heat and fire.

Instructions

Time Range Setting

The time range is calibrated at its maximum time scale, therefore it is desirable to use the timer at a setting as close to its maximum time scale as possible for accurate time delay. For a more accurate time delay, adjust the control knob by measuring the operating time with a watch before application.
On the GT5Y timers, a desired time range can be selected using the time range selectors on the side surface. Turn the multiplier and time unit selectors using a flat screwdriver until they click.

Timing Accuracy

Timing accuracies are calculated from the following formulas:
Repeat Error
$= \pm \frac{1}{2} \times \frac{\text { Max. measured value }- \text { Min. measured value }}{\text { Maximum scale value }} \times 100(\%)$
Voltage Error
$= \pm \frac{\mathrm{Tv}-\mathrm{Tr}}{\mathrm{Tr}} \times 100(\%) \quad \begin{aligned} & \mathrm{Tv} \text { Tverage of measured values at voltage } \mathrm{V} \\ & \mathrm{Tr}: \text { Average of measured values at the raged voltage }\end{aligned}$
Temperature Error
$= \pm \frac{\mathrm{Tt}-\mathrm{T}_{20}}{\mathrm{~T}_{20}} \times 100(\%) \quad \mathrm{Tt}$: Average of measured values at $\mathrm{t}^{\circ} \mathrm{C}$
T_{20} : Average of measured values at $20^{\circ} \mathrm{C}$
Setting Error
$=\underline{\text { Average of measured values - Set value }}$
$=\frac{\text { Maximum scale value }}{\text { Averalue }} \times 100(\%)$

Use of External Input (GT5P-P Only)

1. Do not apply voltage to external input terminals 3 and 4 . Be sure not to connect external inputs to other terminals because the internal circuit may be damaged.
2. Use reliable mechanical contacts capable of switching approximately 22 V DC, 1 mA to close input terminals 3 and 4 .
(Closed: $1 \mathrm{k} \Omega$ maximum, Open: $100 \mathrm{k} \Omega$ minimum) The input terminals should not be connected to a ground wire of other devices.
3. Do not install input lines in parallel with high-voltage or motor lines. Use shielded wires or separate conduit for input lines, and make the input lines as short as possible.

Load Current

The rated current of the contact (or control output) should not be exceeded. Especially for inductive, capacitive, and incandescent lamp loads, the inrush current as large as a few to several tens times the rated current may cause welded contacts and other troubles. The amount of inrush current as well as steady-state current must be taken into consideration.

Contact Protection

Switching an inductive load generates a counter-electromotive force in the coil. The counter emf will cause arcing, which may shorten the contact life. Application of a protection circuit is recommended for contact protection.

Rest Time

When turning power off after time-out, allow a rest time of 0.1 sec , and during operation, 1 sec at least.

Power

Since DC types are designed to operate on DC power containing 10\% or less ripple, insert a smoothing circuit when using a rectified AC power to operate DC type timers.

Continuous Energizing

Continuous energizing for a long period of time may damage the electrical characteristics of the timer because of internal heating. Use an additional relay to the output circuit and refrain from continuous energizing of the timer.

Dielectric Strength Test

When performing an insulation resistance or dielectric strength test on control panels containing timers, make sure that the dielectric strength of the timer is not exceeded. In case the dielectric strength is exceeded, remove the timers from the panels.

Operating Environment

Temperature and Humidity

Use the timer within the operating temperature and operating humidity ranges and prevent freezing and condensation. After storing below the operation temperature, leave the timer at room temperature for a sufficient period of time before use.

Environment

Prevent a corrosive gas such as sulfurous or ammonia gas, organic solvents (alcohol, benzine, thinner, etc.), strong alkaline substances or strong acids from touching to the timer, and do not use the timer in such an environment. Keep the timer from water splashes or steam.

Vibration and Shock

Since excessive vibrations or shocks cause the output contacts to open, the timer should be used within the operating extremes of vibration and shock resistance. Use of hold-down springs is recommended for secure mounting on sockets.

Others

- Use a mechanical-contact switch or relay to supply power to the time.
- When driving the timer using a solid-state output device such as two-wire proximity switch, photoelectric switch or solid-state relay directly, malfunction may be caused by a leakage current from the solid-state device. Be sure to check thoroughly before using.
- Since AC types (such as A100 and A200) comprise a capacitive load, the SSR dielectric strength should be two or more times as large as the power voltage when switching the timer power using an SSR.
- To make a sequence circuit by connecting timer and relay, check the timer operation sufficiently in consideration of the reset time of the timer.

GE1 A saries Electronic Timers

Two different time ranges to cover a wide time range

- Large clear knob for easy time range setting
- ON Delay function
- Highly precise time control
- Instant monitoring of operation status by LED indicators.

Applicable Standards	Mark	File No. or Organization
UL508 CSA C22.2 No. 14	ULI LISTED	UL/c-UL Listed File No. E204716
EN61812-1		EU Low Voltage Directive
		TÜV Product Service

Contact Ratings

Contact Ratings	240 V AC/5A, 24V DC/5A (resistive load)
Electrical Life	100,000 operations minimum (resistive load)
Mechanical Life	GE1A-B: $10,00,000$ GE1A operations minimum GE1A-C: $5,000,000$ operations minimum

Time Ranges

Time Range Code	Magnification	Time Range
10H	1S	0.1 sec . to 1 sec .
	10S	1 sec . to 10 sec .
	1M	0.1 min . to 1 min .
	10M	1 min . to 10 min .
	1H	0.1 hour to 1 hour
	10H	1 hour to 10 hours
30 H	1 S	0.3 sec . to 3 sec .
	10S	3 sec . to 30 sec .
	1M	0.3 min . to 3 min .
	10M	3 min . to 30 min .
	1H	0.3 hour to 3 hour
	10H	3 hour to 30 hours

Time Range	Rated Voltage	Part No.	
		Contact	
		Delayed SPDT + Instantaneous SPDT	Delayed DPDT
$\begin{gathered} 10 \mathrm{H} \\ (0.1 \mathrm{sec} . \text { to } 10 \text { hours }) \end{gathered}$	220 to 240V AC	GE1A-B10HA220	GE1A-C10HA220
	200 to 220V AC	GE1A-B10HA200	GE1A-C10HA200
	110 to 120V AC	GE1A-B10HA110	GE1A-C10HA110
	100 to 110V AC	GE1A-B10HA100	GE1A-C10HA100
	24V AC/DC	GE1A-B10HAD24	GE1A-C10HAD24
30 H(0.3 sec. to 30 hours)	220 to 240V AC	GE1A-B30HA220	GE1A-C30HA220
	200 to 220V AC	GE1A-B30HA200	GE1A-C30HA200
	110 to 120V AC	GE1A-B30HA110	GE1A-C30HA110
	100 to 110V AC	GE1A-B30HA100	GE1A-C30HA100
	24V AC/DC	GE1A-B30HAD24	GE1A-C30HAD24

Part No. Development

Specifications

Model		GE1A-B	GE1A-C
Operation Mode		ON Delay	
Time Range		0.1 second to 30 hours	
Rated Operational Voltage		220 V to 240V AC, 200 to 220V AC, 110 V to 120V AC, 100 to 110 V AC, 24 V AC/DC	
Voltage Tolerance		AC: 85 to 110%, DC: 90 to 110\%	
Operating Temperature		-10 to $+55^{\circ} \mathrm{C}$ (without freezing)	
Storage Temperature		-30 to $+70^{\circ} \mathrm{C}$ (without freezing)	
Operating Humidity		35 to 85\% RH (without condensation)	
Repeat Error		$\pm 0.2 \% \pm 10 \mathrm{~ms}$ maximum	
Voltage Error		$\pm 0.5 \% \pm 10 \mathrm{~ms}$ maximum	
Temperature Error		$\pm 3 \%$ maximum	
Setting Error		$\pm 10 \%$ maximum	
Insulation Resistance		$100 \mathrm{M} \Omega$ minimum (500V DC megger)	
Dielectric Strength	Between power and output terminals	2,000V AC, 1 minute	
	Between contact circuits	750V AC, 1 minute	
	Between contact circuits (opposite pole)	2,000V AC, 1 minute	
Vibration Resistance		Damage limits: Amplitude $0.75 \mathrm{~mm}, 10$ to 55 Hz Operating extremes: Amplitude $0.5 \mathrm{~mm}, 10$ to 55 Hz	
Shock Resistance	Damage limits	Panel mount: $490 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 50G) Surface mount: $249 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 25G)	
	Operating extremes	$98 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 10G)	
Power Consumption	220 V AC	$7.7 \mathrm{VA}(60 \mathrm{~Hz}), 6.6 \mathrm{VA}(50 \mathrm{~Hz})$	$8.0 \mathrm{VA}(60 \mathrm{~Hz}), 7.0 \mathrm{VA}(50 \mathrm{~Hz})$
	200V AC	$7.0 \mathrm{VA}(60 \mathrm{~Hz}), 6.0 \mathrm{VA}(50 \mathrm{~Hz})$	$8.0 \mathrm{VA}(60 \mathrm{~Hz}), 7.0 \mathrm{VA}(50 \mathrm{~Hz})$
	110 V AC	$3.8 \mathrm{VA}(60 \mathrm{~Hz})$, 3.3 VA (50 Hz)	$3.5 \mathrm{VA}(60 \mathrm{~Hz}), 3.0 \mathrm{VA}(50 \mathrm{~Hz})$
	100 V AC	$3.5 \mathrm{VA}(60 \mathrm{~Hz})$, 3.0 VA (50 Hz)	$3.5 \mathrm{VA}(60 \mathrm{~Hz}), 3.0 \mathrm{VA}(50 \mathrm{~Hz})$
	24 V AC	1.6 VA	2.0 VA
	24V DC	1.0W	0.8W
Weight (Approx.)		101 g	95g

GE1A-B

Internal Connections

GE1A-B

GE1A-C

GE1A-C

Dimensions

Panel Cut-out

Applicable Sockets

SR2P-05B (not UL/c-UL listed)

Terminal Arrangement

SR2P-06B

SR6P-M08G

Accessories

Name	Shape	Part No.
Panel Mount Adapter		
Dust Cover		GE9Z-AD
		GE9Z-C48

IDEC CORPORATION

Head Office

6-64, Nishi-Miyahara-2-Chome, Yodogawa-ku, Osaka 532-0004, Japan

USA	IDEC Corporation	Tel: $+1-408-747-0550$	opencontact@idec.com	Taiwan	IDEC Taiwan Corporation	Tel: $+886-2-2577-6938$	service@tw.idec.com
Germany	APEM GmbH	Tel: $+49-40-25$	30	54-0	service@eu.idec.com	Hong Kong	IDEC Izumi (H.K.) Co., Ltd.
Tel: $+852-2803-8989$	info@hk.idec.com						
Singapore	IDEC Izumi Asia Pte. Ltd.	Tel: $+65-6746-1155$	info@sg.idec.com	China/Shanghai	IDEC (Shanghai) Corporation	Tel: $+86-21-6135-1515$	idec@cn.idec.com
Thailand	IDEC Asia (Thailand) Co., Ltd	Tel: $+66-2-392-9765$	sales@th.idec.com	China/Shenzhen	IDEC (Shenzhen) Corporation	Tel: $+86-755-8356-2977$	idec@cn.idec.com
Australia	IDEC Australia Pty. Ltd.	Tel: $+61-3-8523-5900$	sales@au.idec.com	China/Beijing	IDEC (Beijing) Corporation	Tel: $+86-10-6581-6131$	idec@cn.idec.com
India	IDEC Controls India Private Limited	Tel: $+91-80679-35328$	info_india@idec.com	Japan	IDEC Corporation	Tel: $+81-6-6398-2527$	marketing@idec.co.jp

EP1438-12

[^0]: Note: Once installed into the socket, the hold-down springs cannot be removed.

[^1]: Note: See Operating Temperature - Maximum Switching Current Characteristics.

[^2]: Note: S and M of time range indicate second and minute respectively.

